Mostrar el registro sencillo del ítem
dc.contributor.author | Minguzzi, E. | es_ES |
dc.date.accessioned | 2017-09-13T09:27:31Z | |
dc.date.available | 2017-09-13T09:27:31Z | |
dc.date.issued | 2012-04-01 | |
dc.identifier.issn | 1576-9402 | |
dc.identifier.uri | http://hdl.handle.net/10251/87190 | |
dc.description.abstract | [EN] We remove the Hausdorff condition from Levin's theorem on the representation of preorders by families of continuous utilities. We compare some alternative topological assumptions in a Levin's type theorem, and show that they are equivalent to a Polish space assumption. | es_ES |
dc.description.sponsorship | This work has been partially supported by GNFM of INDAM and by FQXi. | |
dc.language | Inglés | es_ES |
dc.publisher | Universitat Politècnica de València | |
dc.relation.ispartof | Applied General Topology | |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Preorder normality | es_ES |
dc.subject | Utilities | es_ES |
dc.subject | Preorder representations | es_ES |
dc.subject | k-spaces | es_ES |
dc.subject.classification | 89 | es_ES |
dc.title | Topological conditions for the representation of preorders by continuous utilities | es_ES |
dc.type | Artículo | es_ES |
dc.date.updated | 2017-09-13T08:49:40Z | |
dc.identifier.doi | 10.4995/agt.2012.1640 | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Minguzzi, E. (2012). Topological conditions for the representation of preorders by continuous utilities. Applied General Topology. 13(1). https://doi.org/10.4995/agt.2012.1640 | es_ES |
dc.description.accrualMethod | SWORD | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/agt.2012.1640 | es_ES |
dc.description.upvformatpfin | 81 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 13 | |
dc.description.issue | 1 | |
dc.identifier.eissn | 1989-4147 | |
dc.contributor.funder | Istituto Nazionale di Alta Matematica "F. Severi", Italia | |
dc.contributor.funder | Foundational Questions Institute |