- -

Compactification of closed preordered spaces

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Compactification of closed preordered spaces

Show simple item record

Files in this item

dc.contributor.author Minguzzi, E. es_ES
dc.date.accessioned 2017-09-15T06:15:07Z
dc.date.available 2017-09-15T06:15:07Z
dc.date.issued 2012-10-01
dc.identifier.issn 1576-9402
dc.identifier.uri http://hdl.handle.net/10251/87333
dc.description.abstract [EN] A topological preordered space admits a Hausdorff T2-preorder compactification if and only if it is Tychonoff and the preorder is represented by the family of continuous isotone functions. We construct the largest Hausdorff T2-preorder compactification for these spaces and clarify its relation with Nachbin’s compactification. Under local compactness the problem of the existence and identification of the smallest Hausdorff T2-preorder compactification is considered. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València
dc.relation.ispartof Applied General Topology
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Nachbin compactification es_ES
dc.subject Quasi-uniformizable space es_ES
dc.subject Completely regularly ordered space es_ES
dc.title Compactification of closed preordered spaces es_ES
dc.type Artículo es_ES
dc.date.updated 2017-09-14T12:05:22Z
dc.identifier.doi 10.4995/agt.2012.1630
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Minguzzi, E. (2012). Compactification of closed preordered spaces. Applied General Topology. 13(2):207-223. doi:10.4995/agt.2012.1630. es_ES
dc.relation.publisherversion https://doi.org/10.4995/agt.2012.1630 es_ES
dc.description.upvformatpinicio 207 es_ES
dc.description.upvformatpfin 223 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 13
dc.description.issue 2
dc.identifier.eissn 1989-4147
dc.contributor.funder Gruppo Nazionale per la Fisica Matematica (GNFM)
dc.contributor.funder Istituto Nazionale di Alta Matematica "F. Severi", Italia (INDAM)


This item appears in the following Collection(s)

Show simple item record