- -

A coat-independent superinfection exclusion rapidly imposed in Nicotiana benthamiana cells by tobacco mosaic virus is not prevented by depletion of the movement protein

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A coat-independent superinfection exclusion rapidly imposed in Nicotiana benthamiana cells by tobacco mosaic virus is not prevented by depletion of the movement protein

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Julve Parreño, Jose Manuel es_ES
dc.contributor.author Gandia Fernàndez, Antoni es_ES
dc.contributor.author Fernández Del Carmen, María Asunción es_ES
dc.contributor.author Sarrion-Perdigones, Alejandro es_ES
dc.contributor.author Castelijns, Bas es_ES
dc.contributor.author Granell Richart, Antonio es_ES
dc.contributor.author Orzáez Calatayud, Diego Vicente es_ES
dc.date.accessioned 2017-09-18T07:37:15Z
dc.date.available 2017-09-18T07:37:15Z
dc.date.issued 2013-04
dc.identifier.issn 0167-4412
dc.identifier.uri http://hdl.handle.net/10251/87403
dc.description.abstract [EN] New evidence is emerging which indicates that population variants in plant virus infections are not uniformly distributed along the plant, but structured in a mosaic-like pattern due to limitation to the superinfection imposed by resident viral clones. The mechanisms that prevent the infection of a challenge virus into a previously infected cell, a phenomenon known as superinfection exclusion (SE) or Homologous Interference, are only partially understood. By taking advantage of a deconstructed tobacco mosaic virus (TMV) system, where the capsid protein (CP) gene is replaced by fluorescent proteins, an exclusion mechanism independent of CP was unveiled. Time-course superinfection experiments provided insights into SE dynamics. Initial infection levels affecting less than 10 % of cells led to full immunization in only 48 h, and measurable immunization levels were detected as early as 6 h post-primary infection. Depletion of a functional movement protein (MP) was also seen to slow down, but not to prevent, the SE mechanism. These observations suggest a CP-independent mechanism based on competition for a host-limiting factor, which operates at very low virus concentration. The possible involvement of host factors in SE has interesting implications as it would enable the host to influence the process. es_ES
dc.description.sponsorship We wish to acknowledge Dr. Victor Klimyuk and Dr. Yuri Gleba from ICON-Genetics for kindly providing the MagnICON vectors. Thanks also to Dr. George Lomonossof for providing the pEAQ vectors. This work was supported by Projects BIO2010-15384 and IPT-2011-0720-010000 from the Spanish Ministry of Economy and Competitiveness. en_EN
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation.ispartof Plant Molecular Biology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Superinfection exclusion es_ES
dc.subject Tobacco mosaic virus es_ES
dc.subject Agroinfiltration es_ES
dc.subject Homologous interference es_ES
dc.subject.classification MICROBIOLOGIA es_ES
dc.subject.classification BIOQUIMICA Y BIOLOGIA MOLECULAR es_ES
dc.title A coat-independent superinfection exclusion rapidly imposed in Nicotiana benthamiana cells by tobacco mosaic virus is not prevented by depletion of the movement protein es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11103-013-0028-1
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//BIO2010-15384/ES/FABRICANDO TOMATES SALUDABLES: BIOPIEZAS PARA INTRAGENESIS Y MOLECULAR FARMING EN SOLANACEAS/ / es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//IPT-2011-0720-010000/ES/PRODUCCIÓN DE PROTEINAS TERAPEUTICAS EN BIOFACTORIAS VEGETALES. PROTEBIOV./ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia es_ES
dc.description.bibliographicCitation Julve Parreño, JM.; Gandia Fernàndez, A.; Fernandez Del Carmen, MA.; Sarrion-Perdigones, A.; Castelijns, B.; Granell Richart, A.; Orzáez Calatayud, DV. (2013). A coat-independent superinfection exclusion rapidly imposed in Nicotiana benthamiana cells by tobacco mosaic virus is not prevented by depletion of the movement protein. Plant Molecular Biology. 81(6):553-564. doi:10.1007/s11103-013-0028-1 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1007/s11103-013-0028-1 es_ES
dc.description.upvformatpinicio 553 es_ES
dc.description.upvformatpfin 564 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 81 es_ES
dc.description.issue 6 es_ES
dc.relation.senia 248403 es_ES
dc.identifier.pmid 23417583
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Abel PP, Nelson RS, De B, Hoffmann N, Rogers SG, Fraley RT, Beachy RN (1986) Delay of disease development in transgenic plants that express the tobacco mosaic virus coat protein gene. Science 232(4751):738–743 es_ES
dc.description.references Abramoff MD, Magalhaes PJ, Ram SJ (2004) Image processing with imageJ. Biophotonics Int 11(7):36–42 es_ES
dc.description.references Benbasat JA, Burck KB, Miller RC Jr (1978) Superinfection exclusion and lack of conservative transfer of bacteriophage T7 DNA. Virology 87(1):164–171 es_ES
dc.description.references Bendahmane M, Beachy RN (1999) Control of tobamovirus infections via pathogen-derived resistance. Adv Virus Res 53:369–386 es_ES
dc.description.references Bendahmane M, Fitchen JH, Zhang G, Beachy RN (1997) Studies of coat protein-mediated resistance to tobacco mosaic tobamovirus: correlation between assembly of mutant coat proteins and resistance. J Virol 71(10):7942–7950 es_ES
dc.description.references Bendahmane M, Chen I, Asurmendi S, Bazzini AA, Szecsi J, Beachy RN (2007) Coat protein-mediated resistance to TMV infection of Nicotiana tabacum involves multiple modes of interference by coat protein. Virology 366(1):107–116 es_ES
dc.description.references Dietrich C, Maiss E (2003) Fluorescent labelling reveals spatial separation of potyvirus populations in mixed infected Nicotiana benthamiana plants. J Gen Virol 84(10):2871–2876 es_ES
dc.description.references Elena SF, Bedhomme S, Carrasco P, Cuevas JM, de la Iglesia F, Lafforgue G, Lalic J, Prosper A, Tromas N, Zwart MP (2011) The evolutionary genetics of emerging plant RNA viruses. Mol Plant Microbe Interact 24(3):287–293 es_ES
dc.description.references Ellenberg P, Linero FN, Scolaro LA (2007) Superinfection exclusion in BHK-21 cells persistently infected with Junín virus. J Gen Virol 88(10):2730–2739 es_ES
dc.description.references Folimonova SY (2012) Superinfection exclusion is an active virus-controlled function that requires a specific viral protein. J Virol 86(10):5554–5561 es_ES
dc.description.references Folimonova SY, Robertson CJ, Shilts T, Folimonov AS, Hilf ME, Garnsey SM, Dawson WO (2010) Infection with strains of Citrus tristeza virus does not exclude superinfection by other strains of the virus. J Virol 84(3):1314–1325 es_ES
dc.description.references Fulton RW (1986) Practices and precautions in the use of cross protection for plant-virus disease-control. Annu Rev Phytopathol 24:67–81 es_ES
dc.description.references Genovés A, Pallás V, Navarro JA (2011) Contribution of topology determinants of a viral movement protein to its membrane association, intracellular traffic, and viral cell-to-cell movement. J Virol 85(15):7797–7809 es_ES
dc.description.references Giritch A, Marillonnet S, Engler C, van Eldik G, Botterman J, Klimyuk V, Gleba Y (2006) Rapid high-yield expression of full-size IgG antibodies in plants coinfected with noncompeting viral vectors. Proc Natl Acad Sci U S A 103(40):14701–14706 es_ES
dc.description.references Gleba Y, Marillonnet S, Klimyuk V (2004) Engineering viral expression vectors for plants: the ‘full virus’ and the ‘deconstructed virus’ strategies. Curr Opin Plant Biol 7(2):182–188 es_ES
dc.description.references Gleba Y, Klimyuk V, Marillonnet S (2005) Magnifection—a new platform for expressing recombinant vaccines in plants. Vaccine 23(17–18):2042–2048 es_ES
dc.description.references Gleba Y, Marillonnet S, Klimyuk V (2006) High throughput gene assembly and expression using viral RNA replicons delivered by agrobacterium. In Vitro Cell Dev Biol Anim 42:10A–10A es_ES
dc.description.references Gonzalez-Jara P, Fraile A, Canto T, Garcia-Arenal F (2009) The multiplicity of infection of a plant virus varies during colonization of its eukaryotic host. J Virol 83(15):7487–7494 es_ES
dc.description.references Gopinath K, Wellink J, Porta C, Taylor KM, Lomonossoff GP, van Kammen A (2000) Engineering cowpea mosaic virus RNA-2 into a vector to express heterologous proteins in plants. Virology 267(2):159–173 es_ES
dc.description.references Kawakami S, Watanabe Y, Beachy RN (2004) Tobacco mosaic virus infection spreads cell to cell as intact replication complexes. Proc Natl Acad Sci U S A 101(16):6291–6296 es_ES
dc.description.references Kliem M, Dreiseikelmann B (1989) The superimmunity gene sim of bacteriophage P1 causes superinfection exclusion. Virology 171(2):350–355 es_ES
dc.description.references Koo JC, Asurmendi S, Bick J, Woodford-Thomas T, Beachy RN (2004) Ecdysone agonist-inducible expression of a coat protein gene from tobacco mosaic virus confers viral resistance in transgenic Arabidopsis. Plant J 37(3):439–448 es_ES
dc.description.references Lee Y-M, Tscherne DM, Yun S-I, Frolov I, Rice CM (2005) Dual mechanisms of pestiviral superinfection exclusion at entry and RNA replication. J Virol 79(6):3231–3242 es_ES
dc.description.references Lu B, Stubbs G, Culver JN (1998) Coat protein interactions involved in tobacco mosaic tobamovirus cross-protection. Virology 248(2):188–198 es_ES
dc.description.references Marillonnet S, Giritch A, Gils M, Kandzia R, Klimyuk V, Gleba Y (2004) In planta engineering of viral RNA replicons: efficient assembly by recombination of DNA modules delivered by Agrobacterium. Proc Natl Acad Sci USA 101(18):6852–6857 es_ES
dc.description.references Marillonnet S, Thoeringer C, Kandzia R, Klimyuk V, Gleba Y (2005) Systemic Agrobacterium tumefaciens-mediated transfection of viral replicons for efficient transient expression in plants. Nat Biotechnol 23(6):718–723 es_ES
dc.description.references Michel N, Allespach I, Venzke S, Fackler OT, Keppler OT (2005) The Nef protein of human immunodeficiency virus establishes superinfection immunity by a dual strategy to downregulate cell-surface CCR5 and CD4. Curr Biol 15(8):714–723 es_ES
dc.description.references Nakazono-Nagaoka E, Takahashi T, Shimizu T, Kosaka Y, Natsuaki T, Omura T, Sasaya T (2009) Cross-protection against bean yellow mosaic virus (BYMV) and clover yellow vein virus by attenuated BYMV isolate M11. Phytopathology 99(3):251–257 es_ES
dc.description.references Nejidat A, Beachy RN (1989) Decreased levels of TMV coat protein in transgenic tobacco plants at elevated temperatures reduce resistance to TMV infection. Virology 173(2):531–538 es_ES
dc.description.references Orzaez D, Mirabel S, Wieland WH, Granell A (2006) Agroinjection of tomato fruits. A tool for rapid functional analysis of transgenes directly in fruit. Plant Physiology 140(1):3–11 es_ES
dc.description.references Powell PA, Sanders PR, Tumer N, Fraley RT, Beachy RN (1990) Protection against tobacco mosaic virus infection in transgenic plants requires accumulation of coat protein rather than coat protein RNA sequences. Virology 175(1):124–130 es_ES
dc.description.references Ramirez S, Perez-del-Pulgar S, Carrion JA, Coto-Llerena M, Mensa L, Dragun J, Garcia-Valdecasas JC, Navasa M, Forns X (2010) Hepatitis C virus superinfection of liver grafts: a detailed analysis of early exclusion of non-dominant virus strains. J Gen Virol 91(Pt 5):1183–1188 es_ES
dc.description.references Ranade K, Poteete AR (1993) Superinfection exclusion (sieB) genes of bacteriophages P22 and lambda. J Bacteriol 175(15):4712–4718 es_ES
dc.description.references Roossinck MJ (2005) Symbiosis versus competition in plant virus evolution. Nat Rev Microbiol 3(12):917–924 es_ES
dc.description.references Sainsbury F, Thuenemann EC, Lomonossoff GP (2009) pEAQ: versatile expression vectors for easy and quick transient expression of heterologous proteins in plants. Plant Biotechnol J 7(7):682–693 es_ES
dc.description.references Sarkar S, Smitamana P (1981) A proteinless mutant of tobacco mosaic virus: evidence against the role of a viral coat protein for interference. Mol Gen Genet 184(1):158–159 es_ES
dc.description.references Syller J (2012) Facilitative and antagonistic interactions between plant viruses in mixed infections. Mol Plant Pathol 13(2):204–216 es_ES
dc.description.references Takahashi T, Sugawara T, Yamatsuta T, Isogai M, Natsuaki T, Yoshikawa N (2007) Analysis of the spatial distribution of identical and two distinct virus populations differently labeled with cyan and yellow fluorescent proteins in coinfected plants. Phytopathology 97(10):1200–1206 es_ES
dc.description.references Tscherne DM, Evans MJ, von Hahn T, Jones CT, Stamataki Z, McKeating JA, Lindenbach BD, Rice CM (2007) Superinfection exclusion in cells infected with hepatitis C virus. J Virol 81(8):3693–3703 es_ES
dc.description.references Voinnet O, Rivas S, Mestre P, Baulcombe D (2003) An enhanced transient expression system in plants based on suppression of gene silencing by the p19 protein of tomato bushy stunt virus. Plant J 33(5):949–956 es_ES
dc.description.references Walkey DGA, Lecoq H, Collier R, Dobson S (1992) Studies on the control of zucchini yellow mosaic-virus in courgettes by mild strain protection. Plant Pathol 41(6):762–771 es_ES
dc.description.references Zaitlin M, Palukaitis P (2000) Advances in understanding plant viruses and virus diseases. Annu Rev Phytopathol 38:117–143 es_ES
dc.description.references Ziebell H, Carr JP (2010) Chapter 6—Cross-protection: a century of mystery. In: John PC, Gad L (eds) Advances in virus research, vol 76. Academic Press, London, pp 211–264 es_ES
dc.description.references Zou G, Zhang B, Lim P-Y, Yuan Z, Bernard KA, Shi P-Y (2009) Exclusion of West Nile virus superinfection through RNA replication. J Virol 83(22):11765–11776 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem