- -

An efficient method for medium throughput screening of cuticular wax composition in different plant species

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

An efficient method for medium throughput screening of cuticular wax composition in different plant species

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Fernández Moreno, Josefina Patricia es_ES
dc.contributor.author Malitsky, S es_ES
dc.contributor.author Lashbrooke, J es_ES
dc.contributor.author Biswal, Ajaya Kumar es_ES
dc.contributor.author Racovita, Radu C. es_ES
dc.contributor.author Mellerowicz, Ewa J. es_ES
dc.contributor.author Jetter, Reinhard es_ES
dc.contributor.author Orzáez Calatayud, Diego Vicente es_ES
dc.contributor.author Aharoni, A es_ES
dc.contributor.author Granell Richart, Antonio es_ES
dc.date.accessioned 2017-09-18T08:50:11Z
dc.date.available 2017-09-18T08:50:11Z
dc.date.issued 2016-04
dc.identifier.issn 1573-3882
dc.identifier.uri http://hdl.handle.net/10251/87408
dc.description.abstract [EN] Introduction Most aerial plant organs are covered by a cuticle, which largely consists of cutin and wax. Cuticular waxes are mixtures of dozens of compounds, mostly very-long-chain aliphatics that are easily extracted by solvents. Over the last four decades, diverse cuticular wax analysis protocols have been developed, most of which are complex and time-consuming, and need to be adapted for each plant species or organ. Plant genomics and breeding programs often require mid-throughput metabolic phenotyping approaches to screen large numbers of individuals and obtain relevant biological information. Objectives To generate a fast, simple and user-friendly methodology able to capture most wax complexity independently of the plant, cultivar and organ. Methods Here we present a simple GC-MS method for screening relatively small wax amounts, sampled by short extraction with a versatile, uniform solvent. The method will be tested and validated in leaves and fruits from three different crop species: tomato (Solanum lycopersicum), apple (Malus domestica) and hybrid aspen (Populus tremula x tremuloides). Results Consistent results were obtained in tomato cultivar M82 across three consecutive years (2010-2012), two organs (leaf and fruit), and also in two different tomato (M82 and MicroTom) and apple (Golden Delicious and Granny Smith) cultivars. Our results on tomato wax composition match those reported previously, while our apple and hybrid aspen analyses provide the first comprehensive cuticular wax profile of these species. Conclusion This protocol allows standardized identification and quantification of most cuticular wax components in a range of species. es_ES
dc.description.sponsorship Research at the IBMCP was supported by MINECO Grant BIO2013-42193-R and from EC H2020 TRADITOM SFS7a-2014- (contract 634561) to Antonio Granell and by FPU-MECD personal Grant to Josefina Patricia Fernandez Moreno (AP-2007-01905). Research at the Weizmann Institute of Sciences was supported by the Israel Science Foundation (ISF) personal Grant to Asaph Aharoni (ISF Grant No. 646/11). We also thank COST FA1106 Quality Fruit for funding networking activities.
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation.ispartof Metabolomics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Metabolic profiling es_ES
dc.subject Cuticular waxes es_ES
dc.subject Fruit surface es_ES
dc.subject Fleshy fruit es_ES
dc.subject.classification BIOQUIMICA Y BIOLOGIA MOLECULAR es_ES
dc.title An efficient method for medium throughput screening of cuticular wax composition in different plant species es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11306-016-0982-0
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BIO2013-42193-R/ES/GREEN SWITCHES: DISEÑO DE CIRCUITOS GENETICOS ARTIFICIALES PARA LA PRODUCCION DE PROTEINAS RECOMBINANTES Y EL ENRIQUECIMIENTO NUTRICIONAL DE PLANTAS SOLANACEAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/634561/EU/Traditional tomato varieties and cultural practices: a case for agricultural diversification with impact on food security and health of European population/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/ISF//646%2F11/
dc.relation.projectID info:eu-repo/grantAgreement/MEC//AP2007-01905/ES/AP2007-01905/
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana - Institut Universitari de Conservació i Millora de l'Agrodiversitat Valenciana es_ES
dc.description.bibliographicCitation Fernández Moreno, JP.; Malitsky, S.; Lashbrooke, J.; Biswal, AK.; Racovita, RC.; Mellerowicz, EJ.; Jetter, R.... (2016). An efficient method for medium throughput screening of cuticular wax composition in different plant species. Metabolomics. 12(4). https://doi.org/10.1007/s11306-016-0982-0 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1007/s11306-016-0982-0 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 12 es_ES
dc.description.issue 4 es_ES
dc.relation.senia 331822 es_ES
dc.identifier.eissn 1573-3890
dc.contributor.funder European Commission
dc.contributor.funder Ministerio de Economía y Competitividad
dc.contributor.funder Israel Science Foundation
dc.contributor.funder Ministerio de Educación y Ciencia es_ES
dc.description.references Adato, A., Mandel, T., Mintz-Oron, S., et al. (2009). Fruit-surface flavonoid accumulation in tomato is controlled by a SlMYB12-regulated transcriptional network. PLoS Genetics, 5, e1000777. es_ES
dc.description.references Albert, Z., Ivanics, B., Molnár, A., Miskó, A., Tóth, M., & Papp, I. (2013). Candidate genes of cuticle formation show characteristic expression in the fruit skin of apple. Plant Growth Regulation, 70, 71–78. es_ES
dc.description.references Bauer, S., Schulte, E., & Their, H.-P. (2004a). Composition of the surface wax from tomatoes. I. Identification of the components by GC/MS. European Food Research and Technology, 219, 223–228. es_ES
dc.description.references Bauer, S., Schulte, E., & Their, H.-P. (2004b). Composition of the surface wax from tomatoes. II. Quantification of the components at the ripe red stage and during ripening. European Food Research and Technology, 219, 487–491. es_ES
dc.description.references Belding, R. D., Blankenship, S. M., Young, E., & Leidy, R. B. (1998). Composition and variability of epicuticular waxes in apple cultivars. Journal of the American Society for Horticultural Science, 123, 348–356. es_ES
dc.description.references Belding, R. D., Sutton, T. B., Blankenship, S. M., & Young, E. (2000). Relationship between apple fruit epicuticular wax and growth of Peltaster fructicola and Leptodontidi umelatius, two fungi that cause sooty blotch disease. Plant Disease, 8, 767–772. es_ES
dc.description.references Buschhaus, C., & Jetter, R. (2011). Composition differences between epicuticular and intracuticular wax substructures: How do plants seal their epidermal surfaces? Journal of Experimental Botany, 62, 841–853. es_ES
dc.description.references Caligiani, A., Malavasi, G., Palla, G., Marseglia, A., Tgnolini, M., & Bruni, R. (2013). A simple GC-MS method for the screening of betulinic, corosolic, maslinic, oleanolic and ursolic acid contents in commercial botanicals used as food supplement ingredients. Food Chemistry, 136, 735–741. es_ES
dc.description.references Cameron, K. D., Teece, M. A., Bevilacqua, E., & Smart, B. (2002). Diversity of cuticular wax among Salix species and Populus species hybrids. Phytochemistry, 60, 715–725. es_ES
dc.description.references Dobson, G., Vasukuttan, V., & Alexander, C. J. (2012). Evaluation of different protocols for the analysis of lipophilic plant metabolites by gas chromatography-mass spectrometry using potato as a model. Metabolomics, 8, 880–893. es_ES
dc.description.references Domínguez, E., Cuartero, J., & Heredia, A. (2011). An overview on plant cuticle biomechanics. Plant Science, 181, 77–84. es_ES
dc.description.references Eshed, Y., & Zamir, D. (1995). An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL. Genetics, 141, 1147–1162. es_ES
dc.description.references Hen-Avivi, S., Lashbrooke, J., Costa, F., & Aharoni, A. (2014). Scratching the surface: Genetic regulation of cuticle assembly in fleshy fruit. Journal of Experimental Botany, 65, 4653–4664. es_ES
dc.description.references Hovav, R., Chehanovsky, N., Moy, M., Jetter, R., & Schaffer, A. A. (2007). The identification of a gene (Cwp1), silenced during Solanum evolution, which causes cuticle microfisuring and dehydration when expressed in tomato fruit. Plant Journal, 52, 627–639. es_ES
dc.description.references Isaacson, T., Kosma, D. K., Matas, A. J., et al. (2009). Cutin deficiency in the tomato fruit cuticle consistently affects resistance to microbial infection and biomechanical properties, but not transpirational water loss. Plant Journal, 60, 363–377. es_ES
dc.description.references Jones, H. G. (1992). Plants and microclimate: A quantitative approach to environmental plant physiology (2nd ed.). New York: Cambridge University Press. es_ES
dc.description.references Kimbara, J., Yoshida, M., Ito, H., et al. (2012). A novel class of sticky peel and light green mutations causes cuticle deficiency in leaves and fruits of tomato (Solanum lycopersicum). Planta, 236, 1559–1570. es_ES
dc.description.references Lara, I., Belge, B., & Goulao, L. F. (2014). The fruit cuticle as a modulator of postharvest quality. Postharvest Biology and Technology, 87, 103–112. es_ES
dc.description.references Lashbrooke, J., Aharoni, A., & Costa, F. (2015). Genome investigation suggests MdSHN3, and APETALLA2-domain transcription factor gene, to be a positive regulator of apple fruit cuticle formation and a inhibitor of russet development. Journal of Experimental Botany. doi: 10.1093/jxb/erv366 . es_ES
dc.description.references Leide, J., Hildebrandt, U., Reussing, K., Riederer, M., & Vogg, G. (2007). The developmental pattern of tomato fruit wax accumulation and its impact on cuticular transpiration barrier properties: Effects of a deficiency in a β-ketoacyl-Coenzyme A synthase (LeCER6). Plant Physiology, 144, 1667–1679. es_ES
dc.description.references Leide, J., Hildebrandt, U., Vogg, G., & Riederer, M. (2011). The positional sterile (ps) mutation affects cuticular transpiration and wax biosynthesis of tomato fruit. Journal of Plant Physiology, 168, 871–877. es_ES
dc.description.references Liu, J., Xu, X., & Deng, X. (2005). Intergeneric somatic hybridization and its application to crop genetic improvement. Plant Cell, Tissue and Organ Culture, 82, 19–44. es_ES
dc.description.references Matsukura, C., Yamaguchi, I., Inamura, M., Ban, Y., Kobayashi, Y., Yin, Y., et al. (2007). Generation of gamma irradiation-induced mutant lines of the miniature tomato (Solanum lycopersicum L.) cultivar ‘Micro-Tom’. Plant Biotechnology, 24, 39–44. es_ES
dc.description.references Riederer, M., & Müller, C. (2006). Biology of the plant cuticle. Oxford: Blackwell Pub. es_ES
dc.description.references Samuels, L., Kunst, L., & Jetter, R. (2008). Sealing plant surface: Cuticular wax formation by epidermal cells. Annual Review of Plant Biology, 59, 683–707. es_ES
dc.description.references Smith, R. M., Marshall, J. A., Davey, M. R., Lowe, K. C., & Power, B. (1996). Comparison of volatiles and waxes in leaves of genetically engineered tomatoes. Phytochemistry, 43, 753–758. es_ES
dc.description.references Szakiel, A., Pąckowski, C., Pensec, F., & Bertsch, C. (2012). Fruit cuticular waxes as a source of biologically active triterpenoids. Phytochemistry Reviews, 11, 263–284. es_ES
dc.description.references Veraverbeke, E. A., Lammertyn, J., Saevels, S., & Nicalï, B. M. (2001). Changes in chemical wax composition of three different apple (Malus domestica Borkh.) cultivars during storage. Postharvest Biology and Technology, 23, 197–208. es_ES
dc.description.references Vogg, G., Fischer, S., Leide, J., et al. (2004). Tomato fruit cuticular waxes and their effects on transpiration barrier properties: Functional characterization of a mutant deficient in a very-long-chain fatty acid β-ketoacyl-CoA synthase. Journal of Experimental Botany, 55, 1401–1410. es_ES
dc.description.references Wang, Z., Guhling, O., Yao, R., Li, F., Yeats, T. H., Rose, J. K. C., & Jetter, R. (2011). Two Oxidosqualene cyclases responsible for biosynthesis of tomato fruit cuticular triterpenoids. Plant Physiology, 155, 540–552. es_ES
dc.description.references Watanabe, S., Mizoguchi, T., Aoki, K., et al. (2007). Ethylmethanesulfonate (EMS) mutagenesis of Solanum lycopersicum cv. Micro-Tom for large-scale mutant screens. Plant Biotechnology, 24, 33–38. es_ES
dc.description.references Yeats, T. H., Buda, G. J., Wang, Z., et al. (2012). The fruit cuticles of wild tomato species exhibit architectural and chemical diversity, providing a new model for studying the evolution of cuticle function. Plant Journal, 69, 655–666. es_ES
dc.description.references Yeats, T. H., & Rose, J. K. C. (2013). The formation and function of plant cuticles. Plant Physiology, 163, 5–20. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem