- -

Classification of single voxel 1H spectra of brain tumours using LCModel

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Classification of single voxel 1H spectra of brain tumours using LCModel

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Raschke, Felix es_ES
dc.contributor.author Fuster García, Elíes es_ES
dc.contributor.author Opstad, K. S. es_ES
dc.contributor.author Howe, Franklyn es_ES
dc.date.accessioned 2017-09-18T09:08:49Z
dc.date.available 2017-09-18T09:08:49Z
dc.date.issued 2012-02
dc.identifier.issn 0952-3480
dc.identifier.uri http://hdl.handle.net/10251/87410
dc.description.abstract [EN] This study presents a novel method for the direct classification of H-1 single-voxel MR brain tumour spectra using the widespread analysis tool LCModel. LCModel is designed to estimate individual metabolite proportions by fitting a linear combination of in vitro metabolite spectra to an in vivo MR spectrum. In this study, it is used to fit representations of complete tumour spectra and to perform a classification according to the highest estimated tissue proportion. Each tumour type is represented by two spectra, a mean component and a variability term, as calculated using a principal component analysis of a training dataset. In the same manner, a mean component and a variability term for normal white matter are also added into the analysis to allow a mixed tissue approach. An unbiased evaluation of the method is carried out through the automatic selection of training and test sets using the Kennard and Stone algorithm, and a comparison of LCModel classification results with those of the INTERPRET Decision Support System (IDSS) which incorporates an advanced pattern recognition method. In a test set of 46 spectra comprising glioblastoma multiforme, low-grade gliomas and meningiomas, LCModel gives a classification accuracy of 90% compared with an accuracy of 95% by IDSS. Copyright (C) 2011 John Wiley & Sons, Ltd. es_ES
dc.description.sponsorship FR was supported by grant C7809/A10342 as part of the Cancer Research-UK and Engineering and Physical Sciences Research Council Cancer Imaging Programme at the Children's Cancer and Leukaemia Group (CCLG), in association with the Medical Research Council and Department of Health (England). EF-G acknowledges funding by the Health Institute Carlos III through the RETICS Combiomed. en_EN
dc.language Inglés es_ES
dc.publisher Wiley es_ES
dc.relation.ispartof NMR in Biomedicine es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject LCModel es_ES
dc.subject Brain es_ES
dc.subject Tumour es_ES
dc.subject Classification es_ES
dc.subject Pattern es_ES
dc.subject Recognition es_ES
dc.subject MRS es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Classification of single voxel 1H spectra of brain tumours using LCModel es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/nbm.1753
dc.relation.projectID info:eu-repo/grantAgreement/CRUK//C7809%2FA10342/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.description.bibliographicCitation Raschke, F.; Fuster García, E.; Opstad, KS.; Howe, F. (2012). Classification of single voxel 1H spectra of brain tumours using LCModel. NMR in Biomedicine. 25(2):322-331. https://doi.org/10.1002/nbm.1753 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1002/nbm.1753 es_ES
dc.description.upvformatpinicio 322 es_ES
dc.description.upvformatpfin 331 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 25 es_ES
dc.description.issue 2 es_ES
dc.relation.senia 217555 es_ES
dc.identifier.pmid 21796709
dc.contributor.funder Cancer Research, Reino Unido es_ES
dc.contributor.funder Instituto de Salud Carlos III es_ES
dc.description.references García-Gómez, J. M., Luts, J., Julià-Sapé, M., Krooshof, P., Tortajada, S., Robledo, J. V., … Robles, M. (2008). Multiproject–multicenter evaluation of automatic brain tumor classification by magnetic resonance spectroscopy. Magnetic Resonance Materials in Physics, Biology and Medicine, 22(1), 5-18. doi:10.1007/s10334-008-0146-y es_ES
dc.description.references Devos, A., Lukas, L., Suykens, J. A. K., Vanhamme, L., Tate, A. R., Howe, F. A., … Van Huffel, S. (2004). Classification of brain tumours using short echo time 1H MR spectra. Journal of Magnetic Resonance, 170(1), 164-175. doi:10.1016/j.jmr.2004.06.010 es_ES
dc.description.references Opstad, K. S., Ladroue, C., Bell, B. A., Griffiths, J. R., & Howe, F. A. (2007). Linear discriminant analysis of brain tumour1H MR spectra: a comparison of classification using whole spectra versus metabolite quantification. NMR in Biomedicine, 20(8), 763-770. doi:10.1002/nbm.1147 es_ES
dc.description.references Tate, A. R., Underwood, J., Acosta, D. M., Julià-Sapé, M., Majós, C., Moreno-Torres, À., … Arús, C. (2006). Development of a decision support system for diagnosis and grading of brain tumours usingin vivo magnetic resonance single voxel spectra. NMR in Biomedicine, 19(4), 411-434. doi:10.1002/nbm.1016 es_ES
dc.description.references Davies, N. P., Wilson, M., Harris, L. M., Natarajan, K., Lateef, S., MacPherson, L., … Peet, A. C. (2008). Identification and characterisation of childhood cerebellar tumours byin vivoproton MRS. NMR in Biomedicine, 21(8), 908-918. doi:10.1002/nbm.1283 es_ES
dc.description.references Weis, J., Ring, P., Olofsson, T., Ortiz-Nieto, F., & Wikström, J. (2009). Short echo time MR spectroscopy of brain tumors: Grading of cerebral gliomas by correlation analysis of normalized spectral amplitudes. Journal of Magnetic Resonance Imaging, 31(1), 39-45. doi:10.1002/jmri.21991 es_ES
dc.description.references Laudadio, T., Mastronardi, N., Vanhamme, L., Van Hecke, P., & Van Huffel, S. (2002). Improved Lanczos Algorithms for Blackbox MRS Data Quantitation. Journal of Magnetic Resonance, 157(2), 292-297. doi:10.1006/jmre.2002.2593 es_ES
dc.description.references Hao, J., Zou, X., Wilson, M. P., Davies, N. P., Sun, Y., Peet, A. C., & Arvanitis, T. N. (2009). A comparative study of feature extraction and blind source separation of independent component analysis (ICA) on childhood brain tumour1H magnetic resonance spectra. NMR in Biomedicine, 22(8), 809-818. doi:10.1002/nbm.1393 es_ES
dc.description.references Ladroue, C., Howe, F. A., Griffiths, J. R., & Tate, A. R. (2003). Independent component analysis for automated decomposition of in vivo magnetic resonance spectra. Magnetic Resonance in Medicine, 50(4), 697-703. doi:10.1002/mrm.10595 es_ES
dc.description.references Herminghaus, S., Dierks, T., Pilatus, U., Möller-Hartmann, W., Wittsack, J., Marquardt, G., … Zanella, F. E. (2003). Determination of histopathological tumor grade in neuroepithelial brain tumors by using spectral pattern analysis of in vivo spectroscopic data. Journal of Neurosurgery, 98(1), 74-81. doi:10.3171/jns.2003.98.1.0074 es_ES
dc.description.references Laudadio, T., Selén, Y., Vanhamme, L., Stoica, P., Van Hecke, P., & Van Huffel, S. (2004). Subspace-based MRS data quantitation of multiplets using prior knowledge. Journal of Magnetic Resonance, 168(1), 53-65. doi:10.1016/j.jmr.2004.01.015 es_ES
dc.description.references Vanhamme, L., van den Boogaart, A., & Van Huffel, S. (1997). Improved Method for Accurate and Efficient Quantification of MRS Data with Use of Prior Knowledge. Journal of Magnetic Resonance, 129(1), 35-43. doi:10.1006/jmre.1997.1244 es_ES
dc.description.references Vanhamme, L., Van Huffel, S., Van Hecke, P., & van Ormondt, D. (1999). Time-Domain Quantification of Series of Biomedical Magnetic Resonance Spectroscopy Signals. Journal of Magnetic Resonance, 140(1), 120-130. doi:10.1006/jmre.1999.1835 es_ES
dc.description.references Provencher, S. W. (1993). Estimation of metabolite concentrations from localizedin vivo proton NMR spectra. Magnetic Resonance in Medicine, 30(6), 672-679. doi:10.1002/mrm.1910300604 es_ES
dc.description.references Pérez-Ruiz, A., Julià-Sapé, M., Mercadal, G., Olier, I., Majós, C., & Arús, C. (2010). The INTERPRET Decision-Support System version 3.0 for evaluation of Magnetic Resonance Spectroscopy data from human brain tumours and other abnormal brain masses. BMC Bioinformatics, 11(1), 581. doi:10.1186/1471-2105-11-581 es_ES
dc.description.references Tate, A. R., Majós, C., Moreno, A., Howe, F. A., Griffiths, J. R., & Arús, C. (2002). Automated classification of short echo time in in vivo1H brain tumor spectra: A multicenter study. Magnetic Resonance in Medicine, 49(1), 29-36. doi:10.1002/mrm.10315 es_ES
dc.description.references Howe, F. A., Barton, S. J., Cudlip, S. A., Stubbs, M., Saunders, D. E., Murphy, M., … Griffiths, J. R. (2003). Metabolic profiles of human brain tumors using quantitative in vivo1H magnetic resonance spectroscopy. Magnetic Resonance in Medicine, 49(2), 223-232. doi:10.1002/mrm.10367 es_ES
dc.description.references Van der Graaf, M., Julià-Sapé, M., Howe, F. A., Ziegler, A., Majós, C., Moreno-Torres, A., … Heerschap, A. (2008). MRS quality assessment in a multicentre study on MRS-based classification of brain tumours. NMR in Biomedicine, 21(2), 148-158. doi:10.1002/nbm.1172 es_ES
dc.description.references Chen, L., Weng, Z., Goh, L., & Garland, M. (2002). An efficient algorithm for automatic phase correction of NMR spectra based on entropy minimization. Journal of Magnetic Resonance, 158(1-2), 164-168. doi:10.1016/s1090-7807(02)00069-1 es_ES
dc.description.references Stoyanova, R., & Brown, T. R. (2001). NMR spectral quantitation by principal component analysis. NMR in Biomedicine, 14(4), 271-277. doi:10.1002/nbm.700 es_ES
dc.description.references Shlens J A tutorial on principal component analysis 2009 http://www.snl.salk.edu/~shlens/pca.pdf es_ES
dc.description.references Kennard, R. W., & Stone, L. A. (1969). Computer Aided Design of Experiments. Technometrics, 11(1), 137. doi:10.2307/1266770 es_ES
dc.description.references Daszykowski, M., Walczak, B., & Massart, D. L. (2002). Representative subset selection. Analytica Chimica Acta, 468(1), 91-103. doi:10.1016/s0003-2670(02)00651-7 es_ES
dc.description.references Louis, D. N., Ohgaki, H., Wiestler, O. D., Cavenee, W. K., Burger, P. C., Jouvet, A., … Kleihues, P. (2007). The 2007 WHO Classification of Tumours of the Central Nervous System. Acta Neuropathologica, 114(2), 97-109. doi:10.1007/s00401-007-0243-4 es_ES
dc.description.references Fuster-Garcia, E., Navarro, C., Vicente, J., Tortajada, S., García-Gómez, J. M., Sáez, C., … Robles, M. (2011). Compatibility between 3T 1H SV-MRS data and automatic brain tumour diagnosis support systems based on databases of 1.5T 1H SV-MRS spectra. Magnetic Resonance Materials in Physics, Biology and Medicine, 24(1), 35-42. doi:10.1007/s10334-010-0241-8 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem