Mostrar el registro sencillo del ítem
dc.contributor.author | Raschke, Felix | es_ES |
dc.contributor.author | Fuster García, Elíes | es_ES |
dc.contributor.author | Opstad, K. S. | es_ES |
dc.contributor.author | Howe, Franklyn | es_ES |
dc.date.accessioned | 2017-09-18T09:08:49Z | |
dc.date.available | 2017-09-18T09:08:49Z | |
dc.date.issued | 2012-02 | |
dc.identifier.issn | 0952-3480 | |
dc.identifier.uri | http://hdl.handle.net/10251/87410 | |
dc.description.abstract | [EN] This study presents a novel method for the direct classification of H-1 single-voxel MR brain tumour spectra using the widespread analysis tool LCModel. LCModel is designed to estimate individual metabolite proportions by fitting a linear combination of in vitro metabolite spectra to an in vivo MR spectrum. In this study, it is used to fit representations of complete tumour spectra and to perform a classification according to the highest estimated tissue proportion. Each tumour type is represented by two spectra, a mean component and a variability term, as calculated using a principal component analysis of a training dataset. In the same manner, a mean component and a variability term for normal white matter are also added into the analysis to allow a mixed tissue approach. An unbiased evaluation of the method is carried out through the automatic selection of training and test sets using the Kennard and Stone algorithm, and a comparison of LCModel classification results with those of the INTERPRET Decision Support System (IDSS) which incorporates an advanced pattern recognition method. In a test set of 46 spectra comprising glioblastoma multiforme, low-grade gliomas and meningiomas, LCModel gives a classification accuracy of 90% compared with an accuracy of 95% by IDSS. Copyright (C) 2011 John Wiley & Sons, Ltd. | es_ES |
dc.description.sponsorship | FR was supported by grant C7809/A10342 as part of the Cancer Research-UK and Engineering and Physical Sciences Research Council Cancer Imaging Programme at the Children's Cancer and Leukaemia Group (CCLG), in association with the Medical Research Council and Department of Health (England). EF-G acknowledges funding by the Health Institute Carlos III through the RETICS Combiomed. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Wiley | es_ES |
dc.relation.ispartof | NMR in Biomedicine | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | LCModel | es_ES |
dc.subject | Brain | es_ES |
dc.subject | Tumour | es_ES |
dc.subject | Classification | es_ES |
dc.subject | Pattern | es_ES |
dc.subject | Recognition | es_ES |
dc.subject | MRS | es_ES |
dc.subject.classification | FISICA APLICADA | es_ES |
dc.title | Classification of single voxel 1H spectra of brain tumours using LCModel | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1002/nbm.1753 | |
dc.relation.projectID | info:eu-repo/grantAgreement/CRUK//C7809%2FA10342/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada | es_ES |
dc.description.bibliographicCitation | Raschke, F.; Fuster García, E.; Opstad, KS.; Howe, F. (2012). Classification of single voxel 1H spectra of brain tumours using LCModel. NMR in Biomedicine. 25(2):322-331. https://doi.org/10.1002/nbm.1753 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://doi.org/10.1002/nbm.1753 | es_ES |
dc.description.upvformatpinicio | 322 | es_ES |
dc.description.upvformatpfin | 331 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 25 | es_ES |
dc.description.issue | 2 | es_ES |
dc.relation.senia | 217555 | es_ES |
dc.identifier.pmid | 21796709 | |
dc.contributor.funder | Cancer Research, Reino Unido | es_ES |
dc.contributor.funder | Instituto de Salud Carlos III | es_ES |
dc.description.references | García-Gómez, J. M., Luts, J., Julià-Sapé, M., Krooshof, P., Tortajada, S., Robledo, J. V., … Robles, M. (2008). Multiproject–multicenter evaluation of automatic brain tumor classification by magnetic resonance spectroscopy. Magnetic Resonance Materials in Physics, Biology and Medicine, 22(1), 5-18. doi:10.1007/s10334-008-0146-y | es_ES |
dc.description.references | Devos, A., Lukas, L., Suykens, J. A. K., Vanhamme, L., Tate, A. R., Howe, F. A., … Van Huffel, S. (2004). Classification of brain tumours using short echo time 1H MR spectra. Journal of Magnetic Resonance, 170(1), 164-175. doi:10.1016/j.jmr.2004.06.010 | es_ES |
dc.description.references | Opstad, K. S., Ladroue, C., Bell, B. A., Griffiths, J. R., & Howe, F. A. (2007). Linear discriminant analysis of brain tumour1H MR spectra: a comparison of classification using whole spectra versus metabolite quantification. NMR in Biomedicine, 20(8), 763-770. doi:10.1002/nbm.1147 | es_ES |
dc.description.references | Tate, A. R., Underwood, J., Acosta, D. M., Julià-Sapé, M., Majós, C., Moreno-Torres, À., … Arús, C. (2006). Development of a decision support system for diagnosis and grading of brain tumours usingin vivo magnetic resonance single voxel spectra. NMR in Biomedicine, 19(4), 411-434. doi:10.1002/nbm.1016 | es_ES |
dc.description.references | Davies, N. P., Wilson, M., Harris, L. M., Natarajan, K., Lateef, S., MacPherson, L., … Peet, A. C. (2008). Identification and characterisation of childhood cerebellar tumours byin vivoproton MRS. NMR in Biomedicine, 21(8), 908-918. doi:10.1002/nbm.1283 | es_ES |
dc.description.references | Weis, J., Ring, P., Olofsson, T., Ortiz-Nieto, F., & Wikström, J. (2009). Short echo time MR spectroscopy of brain tumors: Grading of cerebral gliomas by correlation analysis of normalized spectral amplitudes. Journal of Magnetic Resonance Imaging, 31(1), 39-45. doi:10.1002/jmri.21991 | es_ES |
dc.description.references | Laudadio, T., Mastronardi, N., Vanhamme, L., Van Hecke, P., & Van Huffel, S. (2002). Improved Lanczos Algorithms for Blackbox MRS Data Quantitation. Journal of Magnetic Resonance, 157(2), 292-297. doi:10.1006/jmre.2002.2593 | es_ES |
dc.description.references | Hao, J., Zou, X., Wilson, M. P., Davies, N. P., Sun, Y., Peet, A. C., & Arvanitis, T. N. (2009). A comparative study of feature extraction and blind source separation of independent component analysis (ICA) on childhood brain tumour1H magnetic resonance spectra. NMR in Biomedicine, 22(8), 809-818. doi:10.1002/nbm.1393 | es_ES |
dc.description.references | Ladroue, C., Howe, F. A., Griffiths, J. R., & Tate, A. R. (2003). Independent component analysis for automated decomposition of in vivo magnetic resonance spectra. Magnetic Resonance in Medicine, 50(4), 697-703. doi:10.1002/mrm.10595 | es_ES |
dc.description.references | Herminghaus, S., Dierks, T., Pilatus, U., Möller-Hartmann, W., Wittsack, J., Marquardt, G., … Zanella, F. E. (2003). Determination of histopathological tumor grade in neuroepithelial brain tumors by using spectral pattern analysis of in vivo spectroscopic data. Journal of Neurosurgery, 98(1), 74-81. doi:10.3171/jns.2003.98.1.0074 | es_ES |
dc.description.references | Laudadio, T., Selén, Y., Vanhamme, L., Stoica, P., Van Hecke, P., & Van Huffel, S. (2004). Subspace-based MRS data quantitation of multiplets using prior knowledge. Journal of Magnetic Resonance, 168(1), 53-65. doi:10.1016/j.jmr.2004.01.015 | es_ES |
dc.description.references | Vanhamme, L., van den Boogaart, A., & Van Huffel, S. (1997). Improved Method for Accurate and Efficient Quantification of MRS Data with Use of Prior Knowledge. Journal of Magnetic Resonance, 129(1), 35-43. doi:10.1006/jmre.1997.1244 | es_ES |
dc.description.references | Vanhamme, L., Van Huffel, S., Van Hecke, P., & van Ormondt, D. (1999). Time-Domain Quantification of Series of Biomedical Magnetic Resonance Spectroscopy Signals. Journal of Magnetic Resonance, 140(1), 120-130. doi:10.1006/jmre.1999.1835 | es_ES |
dc.description.references | Provencher, S. W. (1993). Estimation of metabolite concentrations from localizedin vivo proton NMR spectra. Magnetic Resonance in Medicine, 30(6), 672-679. doi:10.1002/mrm.1910300604 | es_ES |
dc.description.references | Pérez-Ruiz, A., Julià-Sapé, M., Mercadal, G., Olier, I., Majós, C., & Arús, C. (2010). The INTERPRET Decision-Support System version 3.0 for evaluation of Magnetic Resonance Spectroscopy data from human brain tumours and other abnormal brain masses. BMC Bioinformatics, 11(1), 581. doi:10.1186/1471-2105-11-581 | es_ES |
dc.description.references | Tate, A. R., Majós, C., Moreno, A., Howe, F. A., Griffiths, J. R., & Arús, C. (2002). Automated classification of short echo time in in vivo1H brain tumor spectra: A multicenter study. Magnetic Resonance in Medicine, 49(1), 29-36. doi:10.1002/mrm.10315 | es_ES |
dc.description.references | Howe, F. A., Barton, S. J., Cudlip, S. A., Stubbs, M., Saunders, D. E., Murphy, M., … Griffiths, J. R. (2003). Metabolic profiles of human brain tumors using quantitative in vivo1H magnetic resonance spectroscopy. Magnetic Resonance in Medicine, 49(2), 223-232. doi:10.1002/mrm.10367 | es_ES |
dc.description.references | Van der Graaf, M., Julià-Sapé, M., Howe, F. A., Ziegler, A., Majós, C., Moreno-Torres, A., … Heerschap, A. (2008). MRS quality assessment in a multicentre study on MRS-based classification of brain tumours. NMR in Biomedicine, 21(2), 148-158. doi:10.1002/nbm.1172 | es_ES |
dc.description.references | Chen, L., Weng, Z., Goh, L., & Garland, M. (2002). An efficient algorithm for automatic phase correction of NMR spectra based on entropy minimization. Journal of Magnetic Resonance, 158(1-2), 164-168. doi:10.1016/s1090-7807(02)00069-1 | es_ES |
dc.description.references | Stoyanova, R., & Brown, T. R. (2001). NMR spectral quantitation by principal component analysis. NMR in Biomedicine, 14(4), 271-277. doi:10.1002/nbm.700 | es_ES |
dc.description.references | Shlens J A tutorial on principal component analysis 2009 http://www.snl.salk.edu/~shlens/pca.pdf | es_ES |
dc.description.references | Kennard, R. W., & Stone, L. A. (1969). Computer Aided Design of Experiments. Technometrics, 11(1), 137. doi:10.2307/1266770 | es_ES |
dc.description.references | Daszykowski, M., Walczak, B., & Massart, D. L. (2002). Representative subset selection. Analytica Chimica Acta, 468(1), 91-103. doi:10.1016/s0003-2670(02)00651-7 | es_ES |
dc.description.references | Louis, D. N., Ohgaki, H., Wiestler, O. D., Cavenee, W. K., Burger, P. C., Jouvet, A., … Kleihues, P. (2007). The 2007 WHO Classification of Tumours of the Central Nervous System. Acta Neuropathologica, 114(2), 97-109. doi:10.1007/s00401-007-0243-4 | es_ES |
dc.description.references | Fuster-Garcia, E., Navarro, C., Vicente, J., Tortajada, S., García-Gómez, J. M., Sáez, C., … Robles, M. (2011). Compatibility between 3T 1H SV-MRS data and automatic brain tumour diagnosis support systems based on databases of 1.5T 1H SV-MRS spectra. Magnetic Resonance Materials in Physics, Biology and Medicine, 24(1), 35-42. doi:10.1007/s10334-010-0241-8 | es_ES |