- -

Upper and lower cl-supercontinuous multifunctions

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Upper and lower cl-supercontinuous multifunctions

Show simple item record

Files in this item

dc.contributor.author Kohli, J.K. es_ES
dc.contributor.author Arya, Chaman Prakash es_ES
dc.date.accessioned 2017-09-19T06:48:01Z
dc.date.available 2017-09-19T06:48:01Z
dc.date.issued 2013-04-01
dc.identifier.issn 1576-9402
dc.identifier.uri http://hdl.handle.net/10251/87456
dc.description.abstract [EN] The notion of cl-supercontinuity ( clopen continuity) of functions is extended to the realm of multifunctions. Basic properties of upper(lower) cl-supercontinuous multifunctions are studied and their place in the hierarchy of strong variants of continuity of multifunctions is discussed. Examples are included to reflect upon the distinctiveness of upper (lower) cl-supercontinuity of multifunctions from that of othe rstrong variants of continuity of multifunctions which already exist in the literature. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València
dc.relation.ispartof Applied General Topology
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject upper(lower)cl-supercontinuous multifunction es_ES
dc.subject strongly continuous multifunction es_ES
dc.subject upper(lower) perfectly continuous multifunction es_ES
dc.subject upper(lower) z-supercontinuous multifunction es_ES
dc.subject upper( lower) D-supercontinuous multifunction es_ES
dc.title Upper and lower cl-supercontinuous multifunctions es_ES
dc.type Artículo es_ES
dc.date.updated 2017-09-19T06:41:04Z
dc.identifier.doi 10.4995/agt.2013.1608
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Kohli, J.; Arya, CP. (2013). Upper and lower cl-supercontinuous multifunctions. Applied General Topology. 14(1):1-15. https://doi.org/10.4995/agt.2013.1608 es_ES
dc.description.accrualMethod SWORD es_ES
dc.relation.publisherversion https://doi.org/10.4995/agt.2013.1608 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 15 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 14
dc.description.issue 1
dc.identifier.eissn 1989-4147
dc.description.references M. Akdag, On the upper and lower super D-continuous multifunctions, Instanbul Univ. Sciences Faculty, Journal of Mathehmatics 60 (2001), 101–109. es_ES
dc.description.references M. Akdag, On supercontinuous multifunctions, Acta Math. Hungar. 99, no. 1-2 (2003), 143–153. M. Akdag, On upper and lower z-supercontinuous multifunctions, Kyungpook Math. J. 45 (2005), 221–230. es_ES
dc.description.references M. Akdag, On upper and lower D-supercontinuous multifunctions, Miskolc Mathematical Notes 7, no. 1 (2006), 3–11. es_ES
dc.description.references S. P. Arya and R. Gupta, On strongly continuous mappings, Kyungpook Math. J. 14 (1974),131–143. es_ES
dc.description.references L. Górniewicz, Topological fixed point Theory of Multivalued Mappings, Kluwer Academic Publishers, Dordrect, T [7] N. C. Heldermann, Developability and some new regularity axiom, Canad. J. Math.33 (1981), 641–663. es_ES
dc.description.references L'. Hola, V. Balaz and T. Neubrunn, Remarks on c-upper semicontinuous multifunctions, Acta Mat. Univ. Comenianae 50/51 (1987), 159–165. es_ES
dc.description.references L'. Hola, Some conditions that imply continuity of almost continuous multifunctions, Acta Mat. Univ. 52/53 (1987), 159–165. es_ES
dc.description.references L'. Hola, Remarks on almost continuous multifunctions, Math. Slovaca 38 (1988), 325–331. es_ES
dc.description.references J. L. Kelley, General Topology, Van Nastrand, New York 1955. es_ES
dc.description.references J. K. Kohli and C. P. Arya, Strongly continuous and perfectly continuous multifunctions, Sci. Stud. Res. Ser. Math. Inform. 20, no. 1 (2010), 103–117. es_ES
dc.description.references J. K. Kohli and R. Kumar, z-supercontinuous functions, Indian J. Pure Appl. Math. 33, no. 7 (2002), 1097–1108. es_ES
dc.description.references J. K. Kohli and A. K. Das, New normality axioms and decompositions of normality, Glasnik Mat. 37(57) (2002), 105–114. es_ES
dc.description.references Kohli, J. K., & Singh, D. (2008). Function Spaces and Strong Variants of Continuity. Applied General Topology, 9(1), 33-38. doi:10.4995/agt.2008.1867 es_ES
dc.description.references Y. Kucuk, On strongly -continuous multifunctions, Pure and Appl. Math. Sci. 40 (1994), 43–54. es_ES
dc.description.references Levine, N. (1960). Strong Continuity in Topological Spaces. The American Mathematical Monthly, 67(3), 269. doi:10.2307/2309695 es_ES
dc.description.references Mack, J. (1970). Countable paracompactness and weak normality properties. Transactions of the American Mathematical Society, 148(1), 265-265. doi:10.1090/s0002-9947-1970-0259856-3 es_ES
dc.description.references T. Noiri, Supercontinuity and some strong forms of continuity, Indian J. Pure Appl. Math. 15, no. 3 (1984), 241–250. es_ES
dc.description.references I. L. Reilly and M. K. Vamanamurthy, On supercontinuous mappings, Indian J. Pure Appl. Math. 14, no. 6 (1983), 767–772. es_ES
dc.description.references Singh, D. (2007). cl-Supercontinuous Functions. Applied General Topology, 8(2), 293-300. doi:10.4995/agt.2007.1899 es_ES
dc.description.references R. E. Smithson, Almost and weak continuity for multifunctions, Bull. Calcutta Math. Soc. 70 (1978), 383–390. es_ES
dc.description.references Staum, R. (1974). The algebra of bounded continuous functions into a nonarchimedean field. Pacific Journal of Mathematics, 50(1), 169-185. doi:10.2140/pjm.1974.50.169 es_ES
dc.description.references A. Sostak, On a class of topological spaces containing all bicompact and connected spaces, General topology and its relation to modern analysis and algebra IV: Proceedings of the 4th Prague topological symposium, (1976) part B 445-451. es_ES
dc.description.references N.V. Velicko, H-closed topological spaces, Amer. Math. Soc. Transl. 78, no. 2 (1968), 103–118. es_ES
dc.description.references Whyburn, G. T. (1965). CONTINUITY OF MULTIFUNCTIONS. Proceedings of the National Academy of Sciences, 54(6), 1494-1501. doi:10.1073/pnas.54.6.1494 es_ES


This item appears in the following Collection(s)

Show simple item record