- -

Magnetic interaction in all silicon waveguide spherical coupler device

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Magnetic interaction in all silicon waveguide spherical coupler device

Show simple item record

Files in this item

dc.contributor.author Shi, Lei es_ES
dc.contributor.author Meseguer Rico, Francisco Javier es_ES
dc.date.accessioned 2017-09-20T09:24:10Z
dc.date.available 2017-09-20T09:24:10Z
dc.date.issued 2012-09-04
dc.identifier.issn 1094-4087
dc.identifier.uri http://hdl.handle.net/10251/87605
dc.description.abstract [EN] The magnetic field component of light in dielectric materials generally plays a negligible role at optical frequency values. However, it is a key component of metal based metamaterials. Here we report on the dominant role of the magnetic interaction in a dielectric spherical silicon nanocavity coupled to a silicon waveguide. The analytical method, as well as the finite difference time domain (FDTD) simulation, show a three dimensional (3D) magnetic trap effect when the magnetic like Mie resonances of the nanocavity are excited. (C)2012 Optical Society of America es_ES
dc.description.sponsorship The authors acknowledge financial support from the following projects FIS2009-07812, Consolider 2007-0046 Nanolight, and the PROMETEO/2010/043. L. Shi thanks the financial support from the MICINN (Estancias de profesores e investigadores extranjeros en centros espanoles) fellowship program. The authors thank to Dr. E. Xifre-Perez for useful discussions. en_EN
dc.language Inglés es_ES
dc.publisher Optical Society of America es_ES
dc.relation.ispartof Optics Express es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Analytical method es_ES
dc.subject Finite-difference time-domain simulation es_ES
dc.subject Magnetic field components es_ES
dc.subject Magnetic interactions es_ES
dc.subject Magnetic trap es_ES
dc.subject Mie resonance es_ES
dc.subject Nano-cavities es_ES
dc.subject Optical frequency es_ES
dc.subject Silicon waveguide es_ES
dc.subject Spherical silicon es_ES
dc.subject Dielectric materials es_ES
dc.title Magnetic interaction in all silicon waveguide spherical coupler device es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1364/OE.20.022616
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//FIS2009-07812/ES/Coloides De Silicio. Sintesis, Caracterizacion Y Aplicaciones Tecnologicas./ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MEC//CSD2007-00046/ES/NanoLight.es - Light Control on the Nanoscale/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2010%2F043/ES/TRANSMISIÓN Y LOCALIZACIÓN DE ONDAS EN METAMATERIALES/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Centro de Tecnologías Físicas: Acústica, Materiales y Astrofísica - Centre de Tecnologies Físiques: Acústica, Materials i Astrofísica es_ES
dc.description.bibliographicCitation Shi, L.; Meseguer Rico, FJ. (2012). Magnetic interaction in all silicon waveguide spherical coupler device. Optics Express. 20(20):22616-22626. https://doi.org/10.1364/OE.20.022616 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1364/OE.20.022616 es_ES
dc.description.upvformatpinicio 22616 es_ES
dc.description.upvformatpfin 22626 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 20 es_ES
dc.description.issue 20 es_ES
dc.relation.senia 286816 es_ES
dc.identifier.pmid 23037411
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Ministerio de Educación y Ciencia es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.description.references Ashkin, A. (1970). Acceleration and Trapping of Particles by Radiation Pressure. Physical Review Letters, 24(4), 156-159. doi:10.1103/physrevlett.24.156 es_ES
dc.description.references Ashkin, A., & Dziedzic, J. M. (1977). Observation of Resonances in the Radiation Pressure on Dielectric Spheres. Physical Review Letters, 38(23), 1351-1354. doi:10.1103/physrevlett.38.1351 es_ES
dc.description.references Chu, S. (1998). Nobel Lecture: The manipulation of neutral particles. Reviews of Modern Physics, 70(3), 685-706. doi:10.1103/revmodphys.70.685 es_ES
dc.description.references Juan, M. L., Righini, M., & Quidant, R. (2011). Plasmon nano-optical tweezers. Nature Photonics, 5(6), 349-356. doi:10.1038/nphoton.2011.56 es_ES
dc.description.references Ashkin, A. (1997). Optical trapping and manipulation of neutral particles using lasers. Proceedings of the National Academy of Sciences, 94(10), 4853-4860. doi:10.1073/pnas.94.10.4853 es_ES
dc.description.references Fazal, F. M., & Block, S. M. (2011). Optical tweezers study life under tension. Nature Photonics, 5(6), 318-321. doi:10.1038/nphoton.2011.100 es_ES
dc.description.references CHU, S. (1991). Laser Manipulation of Atoms and Particles. Science, 253(5022), 861-866. doi:10.1126/science.253.5022.861 es_ES
dc.description.references Ketterle, W. (2002). Nobel lecture: When atoms behave as waves: Bose-Einstein condensation and the atom laser. Reviews of Modern Physics, 74(4), 1131-1151. doi:10.1103/revmodphys.74.1131 es_ES
dc.description.references Bloch, I. (2005). Ultracold quantum gases in optical lattices. Nature Physics, 1(1), 23-30. doi:10.1038/nphys138 es_ES
dc.description.references Smith, D. R. (2004). Metamaterials and Negative Refractive Index. Science, 305(5685), 788-792. doi:10.1126/science.1096796 es_ES
dc.description.references Soukoulis, C. M., & Wegener, M. (2011). Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nature Photonics, 5(9), 523-530. doi:10.1038/nphoton.2011.154 es_ES
dc.description.references Merlin, R. (2009). Metamaterials and the Landau–Lifshitz permeability argument: Large permittivity begets high-frequency magnetism. Proceedings of the National Academy of Sciences, 106(6), 1693-1698. doi:10.1073/pnas.0808478106 es_ES
dc.description.references Burresi, M., van Oosten, D., Kampfrath, T., Schoenmaker, H., Heideman, R., Leinse, A., & Kuipers, L. (2009). Probing the Magnetic Field of Light at Optical Frequencies. Science, 326(5952), 550-553. doi:10.1126/science.1177096 es_ES
dc.description.references Vignolini, S., Intonti, F., Riboli, F., Balet, L., Li, L. H., Francardi, M., … Gurioli, M. (2010). Magnetic Imaging in Photonic Crystal Microcavities. Physical Review Letters, 105(12). doi:10.1103/physrevlett.105.123902 es_ES
dc.description.references Burresi, M., Kampfrath, T., van Oosten, D., Prangsma, J. C., Song, B. S., Noda, S., & Kuipers, L. (2010). Magnetic Light-Matter Interactions in a Photonic Crystal Nanocavity. Physical Review Letters, 105(12). doi:10.1103/physrevlett.105.123901 es_ES
dc.description.references Enkrich, C., Wegener, M., Linden, S., Burger, S., Zschiedrich, L., Schmidt, F., … Soukoulis, C. M. (2005). Magnetic Metamaterials at Telecommunication and Visible Frequencies. Physical Review Letters, 95(20). doi:10.1103/physrevlett.95.203901 es_ES
dc.description.references Grigorenko, A. N., Geim, A. K., Gleeson, H. F., Zhang, Y., Firsov, A. A., Khrushchev, I. Y., & Petrovic, J. (2005). Nanofabricated media with negative permeability at visible frequencies. Nature, 438(7066), 335-338. doi:10.1038/nature04242 es_ES
dc.description.references Zhao, R., Tassin, P., Koschny, T., & Soukoulis, C. M. (2010). Optical forces in nanowire pairs and metamaterials. Optics Express, 18(25), 25665. doi:10.1364/oe.18.025665 es_ES
dc.description.references Lapine, M., Shadrivov, I. V., Powell, D. A., & Kivshar, Y. S. (2011). Magnetoelastic metamaterials. Nature Materials, 11(1), 30-33. doi:10.1038/nmat3168 es_ES
dc.description.references Liu, Y., & Zhang, X. (2011). Metamaterials: a new frontier of science and technology. Chemical Society Reviews, 40(5), 2494. doi:10.1039/c0cs00184h es_ES
dc.description.references Garcés-Chávez, V., Quidant, R., Reece, P. J., Badenes, G., Torner, L., & Dholakia, K. (2006). Extended organization of colloidal microparticles by surface plasmon polariton excitation. Physical Review B, 73(8). doi:10.1103/physrevb.73.085417 es_ES
dc.description.references O’Brien, S., & Pendry, J. B. (2002). Photonic band-gap effects and magnetic activity in dielectric composites. Journal of Physics: Condensed Matter, 14(15), 4035-4044. doi:10.1088/0953-8984/14/15/317 es_ES
dc.description.references Popa, B.-I., & Cummer, S. A. (2008). Compact Dielectric Particles as a Building Block for Low-Loss Magnetic Metamaterials. Physical Review Letters, 100(20). doi:10.1103/physrevlett.100.207401 es_ES
dc.description.references Schuller, J. A., Zia, R., Taubner, T., & Brongersma, M. L. (2007). Dielectric Metamaterials Based on Electric and Magnetic Resonances of Silicon Carbide Particles. Physical Review Letters, 99(10). doi:10.1103/physrevlett.99.107401 es_ES
dc.description.references Nieto-Vesperinas, M., Gomez-Medina, R., & Saenz, J. J. (2010). Angle-suppressed scattering and optical forces on submicrometer dielectric particles. Journal of the Optical Society of America A, 28(1), 54. doi:10.1364/josaa.28.000054 es_ES
dc.description.references Harris, J. T., Hueso, J. L., & Korgel, B. A. (2010). Hydrogenated Amorphous Silicon (a-Si:H) Colloids. Chemistry of Materials, 22(23), 6378-6383. doi:10.1021/cm102486w es_ES
dc.description.references Fenollosa, R., Meseguer, F., & Tymczenko, M. (2008). Silicon Colloids: From Microcavities to Photonic Sponges. Advanced Materials, 20(1), 95-98. doi:10.1002/adma.200701589 es_ES
dc.description.references Xifré-Pérez, E., Fenollosa, R., & Meseguer, F. (2011). Low order modes in microcavities based on silicon colloids. Optics Express, 19(4), 3455. doi:10.1364/oe.19.003455 es_ES
dc.description.references Xifré-Pérez, E., Domenech, J. D., Fenollosa, R., Muñoz, P., Capmany, J., & Meseguer, F. (2011). All silicon waveguide spherical microcavity coupler device. Optics Express, 19(4), 3185. doi:10.1364/oe.19.003185 es_ES
dc.description.references Chaumet, P. C., & Rahmani, A. (2009). Electromagnetic force and torque on magnetic and negative-index scatterers. Optics Express, 17(4), 2224. doi:10.1364/oe.17.002224 es_ES
dc.description.references Nieto-Vesperinas, M., Sáenz, J. J., Gómez-Medina, R., & Chantada, L. (2010). Optical forces on small magnetodielectric particle. Optics Express, 18(11), 11428. doi:10.1364/oe.18.011428 es_ES
dc.description.references Gómez-Medina, R., Nieto-Vesperinas, M., & Sáenz, J. J. (2011). Nonconservative electric and magnetic optical forces on submicron dielectric particles. Physical Review A, 83(3). doi:10.1103/physreva.83.033825 es_ES
dc.description.references Shi, L., Xifré-Pérez, E., García de Abajo, F. J., & Meseguer, F. (2012). Looking through the mirror: Optical microcavity-mirror image photonic interaction. Optics Express, 20(10), 11247. doi:10.1364/oe.20.011247 es_ES
dc.description.references Erickson, D., Serey, X., Chen, Y.-F., & Mandal, S. (2011). Nanomanipulation using near field photonics. Lab on a Chip, 11(6), 995. doi:10.1039/c0lc00482k es_ES
dc.description.references Lin, S., Schonbrun, E., & Crozier, K. (2010). Optical Manipulation with Planar Silicon Microring Resonators. Nano Letters, 10(7), 2408-2411. doi:10.1021/nl100501d es_ES
dc.description.references Mandal, S., Serey, X., & Erickson, D. (2010). Nanomanipulation Using Silicon Photonic Crystal Resonators. Nano Letters, 10(1), 99-104. doi:10.1021/nl9029225 es_ES
dc.description.references Greiner, M., & Fölling, S. (2008). Optical lattices. Nature, 453(7196), 736-738. doi:10.1038/453736a es_ES
dc.description.references Albaladejo, S., Marqués, M. I., Laroche, M., & Sáenz, J. J. (2009). Scattering Forces from the Curl of the Spin Angular Momentum of a Light Field. Physical Review Letters, 102(11). doi:10.1103/physrevlett.102.113602 es_ES
dc.description.references Iida, T., & Ishihara, H. (2003). Theoretical Study of the Optical Manipulation of Semiconductor Nanoparticles under an Excitonic Resonance Condition. Physical Review Letters, 90(5). doi:10.1103/physrevlett.90.057403 es_ES
dc.description.references Yang, X., Liu, Y., Oulton, R. F., Yin, X., & Zhang, X. (2011). Optical Forces in Hybrid Plasmonic Waveguides. Nano Letters, 11(2), 321-328. doi:10.1021/nl103070n es_ES


This item appears in the following Collection(s)

Show simple item record