- -

Hanwrittent Text Recognition for Bengali

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Hanwrittent Text Recognition for Bengali

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Sánchez Peiró, Joan Andreu es_ES
dc.contributor.author Pal, Umapada es_ES
dc.date.accessioned 2017-09-20T10:41:42Z
dc.date.available 2017-09-20T10:41:42Z
dc.date.issued 2016
dc.identifier.issn 2167-6445
dc.identifier.uri http://hdl.handle.net/10251/87624
dc.description © 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. es_ES
dc.description.abstract Handwritten text recognition of Bengali is a difficult task because of complex character shapes due to the presence of modified/compound characters as well as zone-wise writing styles of different individuals. Most of the research published so far on Bengali handwriting recognition deals with either isolated character recognition or isolated word recognition, and just a few papers have researched on recognition of continuous handwritten Bengali. In this paper we present a research on continuous handwritten Bengali. We follow a classical line-based recognition approach with a system based on hidden Markov models and n-gram language models. These models are trained with automatic methods from annotated data. We research both on the maximum likelihood approach and the minimum error phone approach for training the optical models. We also research on the use of word-based language models and characterbased language models. This last approach allow us to deal with the out-of-vocabulary word problem in the test when the training set is of limited size. From the experiments we obtained encouraging results. es_ES
dc.description.sponsorship This work has been partially supported through the European Union’s H2020 grant READ (Recognition and Enrichment of Archival Documents) (Ref: 674943) and partially supported by MINECO/FEDER, UE under project TIN2015-70924-C2-1-R. es_ES
dc.format.extent 6 es_ES
dc.language Inglés es_ES
dc.publisher IEEE es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Hanwrittent Text Recognition es_ES
dc.subject HMM es_ES
dc.subject n-grams es_ES
dc.subject MPE training es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.title Hanwrittent Text Recognition for Bengali es_ES
dc.type Comunicación en congreso es_ES
dc.identifier.doi 10.1109/ICFHR.2016.0105
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/674943/EU/Recognition and Enrichment of Archival Documents/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TIN2015-70924-C2-1-R/ES/CONTEXTO, MULTIMODALIDAD Y COLABORACION DEL USUARIO EN PROCESADO DE TEXTO MANUSCRITO/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.description.bibliographicCitation Sánchez Peiró, JA.; Pal, U. (2016). Hanwrittent Text Recognition for Bengali. IEEE. https://doi.org/10.1109/ICFHR.2016.0105 es_ES
dc.description.accrualMethod S es_ES
dc.relation.conferencename 15th International Conference on Frontiers in Handwriting Recognition (ICFHR 2016) es_ES
dc.relation.conferencedate October 23-26, 2016 es_ES
dc.relation.conferenceplace Shenzhen, China es_ES
dc.relation.publisherversion http://ieeexplore.ieee.org/document/7814121/ es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.relation.senia 320614 es_ES
dc.contributor.funder European Commission es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder European Regional Development Fund es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem