- -

Organic-inorganic supramolecular solid catalyst boosts organic reactions in water

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Organic-inorganic supramolecular solid catalyst boosts organic reactions in water

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author García García, Pilar es_ES
dc.contributor.author Moreno Rodríguez, José María es_ES
dc.contributor.author Díaz Morales, Urbano Manuel es_ES
dc.contributor.author Bruix, Marta es_ES
dc.contributor.author Corma Canós, Avelino es_ES
dc.date.accessioned 2017-09-21T12:09:28Z
dc.date.available 2017-09-21T12:09:28Z
dc.date.issued 2016-02
dc.identifier.issn 2041-1723
dc.identifier.uri http://hdl.handle.net/10251/87740
dc.description.abstract [EN] Coordination polymers and metal-organic frameworks are appealing as synthetic hosts for mediating chemical reactions. Here we report the preparation of a mesoscopic metal-organic structure based on single-layer assembly of aluminium chains and organic alkylaryl spacers. The material markedly accelerates condensation reactions in water in the absence of acid or base catalyst, as well as organocatalytic Michael-type reactions that also show superior enantioselectivity when comparing with the host-free transformation. The mesoscopic phase of the solid allows for easy diffusion of products and the catalytic solid is recycled and reused. Saturation transfer difference and two-dimensional H-1 nuclear Overhauser effect NOESY NMR spectroscopy show that non-covalent interactions are operative in these host-guest systems that account for substrate activation. The mesoscopic character of the host, its hydrophobicity and chemical stability in water, launch this material as a highly attractive supramolecular catalyst to facilitate (asymmetric) transformations under more environmentally friendly conditions. es_ES
dc.description.sponsorship This work was funded by ERC-AdG-2014-671093-SynCatMatch and the Generalitat Valenciana (Prometeo). M.B. acknowledges the funding: CTQ2014-52633-P. The Severo Ochoa program (SEV-2012-0267) is thankfully acknowledged. en_EN
dc.language Inglés es_ES
dc.publisher Nature Publishing Group es_ES
dc.relation.ispartof Nature Communications es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Enantioselective Michael Addition es_ES
dc.subject NMR-spectroscopy es_ES
dc.subject Ligand-binding es_ES
dc.subject Frameworks es_ES
dc.subject Storage es_ES
dc.subject Hydrogen es_ES
dc.subject Isobutyraldehyde es_ES
dc.subject Nitroalkenes es_ES
dc.subject Simulations es_ES
dc.subject Chemistry es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Organic-inorganic supramolecular solid catalyst boosts organic reactions in water es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1038/ncomms10835
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SEV-2012-0267/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/671093/EU/MATching zeolite SYNthesis with CATalytic activity/
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTQ2014-52633-P/ES/RECONOCIMIENTO EN SISTEMAS COMPLEJOS DE BIOMOLECULAS MEDIANTE RMN: METODOLOGIA, INTERACCIONES MULTIMOLECULARES E IDPS/
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation García García, P.; Moreno Rodríguez, JM.; Díaz Morales, UM.; Bruix, M.; Corma Canós, A. (2016). Organic-inorganic supramolecular solid catalyst boosts organic reactions in water. Nature Communications. 7. https://doi.org/10.1038/ncomms10835 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1038/ncomms10835 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 7 es_ES
dc.relation.senia 305108 es_ES
dc.identifier.pmid 26912294 en_EN
dc.identifier.pmcid PMC4773429 en_EN
dc.contributor.funder European Commission
dc.contributor.funder Generalitat Valenciana
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Li, B. et al. A porous metal-organic framework with dynamic pyrimidine groups exhibiting record high methane storage working capacity. J. Am. Chem. Soc. 136, 6207–6210 (2014). es_ES
dc.description.references Getman, R. B., Bae, Y.-S., Wilmer, C. E. & Snurr, R. Q. Review and analysis of molecular simulations of methane, hydrogen, and acetylene storage in metal–organic frameworks. Chem. Rev. 112, 703–723 (2012). es_ES
dc.description.references Suh, M. P., Park, H. J., Prasad, T. K. & Lim, D.-W. Hydrogen storage in metal–organic frameworks. Chem. Rev. 112, 782–835 (2012). es_ES
dc.description.references Li, B., Wen, H.-M., Zhou, W. & Chen, B. Porous metal-organic frameworks for gas storage and separation: what, how, and why? J. Phys. Chem. Lett. 5, 3468–3479 (2014). es_ES
dc.description.references Li, J.-R., Sculley, J. & Zhou, H.-C. Metal–organic frameworks for separations. Chem. Rev. 112, 869–932 (2012). es_ES
dc.description.references Cui, Y., Yue, Y., Qian, G. & Chen, B. Luminescent functional metal–organic frameworks. Chem. Rev. 112, 1126–1162 (2012). es_ES
dc.description.references Yoon, M., Suh, K., Natarajan, S. & Kim, K. Proton conduction in metal–organic frameworks and related modularly built porous solids. Angew. Chem. Int. Ed. 52, 2688–2700 (2013). es_ES
dc.description.references Kurmoo, M. Magnetic metal-organic frameworks. Chem. Soc. Rev. 38, 1353–1379 (2009). es_ES
dc.description.references Horcajada, P. et al. Metal–organic frameworks in biomedicine. Chem. Rev. 112, 1232–1268 (2012). es_ES
dc.description.references Liu, J. et al. Applications of metal-organic frameworks in heterogeneous supramolecular catalysis. Chem. Soc. Rev. 43, 6011–6061 (2014). es_ES
dc.description.references Rowsell, J. L. C. & Yaghi, O. M. Metal–organic frameworks: a new class of porous materials. Micropor. Mesopor. Mat. 73, 3–14 (2004). es_ES
dc.description.references Eubank, J. F. et al. The next chapter in MOF pillaring strategies: trigonal heterofunctional ligands to access targeted high-connected three dimensional nets, isoreticular platforms. J. Am. Chem. Soc. 133, 17532–17535 (2011). es_ES
dc.description.references Rodenas, T. et al. Metal-organic framework nanosheets in polymer composite materials for gas separation. Nat. Mater. 14, 48–55 (2015). es_ES
dc.description.references Chang, Z. et al. Rational construction of 3D pillared metal–organic frameworks: synthesis, structures, and hydrogen adsorption properties. Inorg. Chem. 50, 7555–7562 (2011). es_ES
dc.description.references Cheetham, A. K., Rao, C. N. R. & Feller, R. K. Structural diversity and chemical trends in hybrid inorganic-organic framework materials. Chem. Commun. 4780–4795 (2006). es_ES
dc.description.references Loiseau, T. et al. A rationale for the large breathing of the porous aluminum terephthalate (MIL-53) upon hydration. Chem. Eur. J. 10, 1373–1382 (2004). es_ES
dc.description.references Senkovska, I. et al. New highly porous aluminium based metal-organic frameworks: Al(OH)(ndc) (ndc=2,6-naphthalene dicarboxylate) and Al (OH) (bpdc) (bpdc=4,4′-biphenyl dicarboxylate). Micropor. Mesopor. Mat. 122, 93–98 (2009). es_ES
dc.description.references Klein, N. et al. Structural flexibility and intrinsic dynamics in the M2(2,6-ndc)2(dabco) (M=Ni, Cu, Co, Zn) metal-organic frameworks. J. Mater. Chem. 22, 10303–10312 (2012). es_ES
dc.description.references Hoffmann, H. C. et al. High-pressure in situ 129Xe NMR spectroscopy and computer simulations of breathing transitions in the metal–organic framework Ni2(2,6-ndc)2(dabco) (DUT-8(Ni). J. Am. Chem. Soc. 133, 8681–8690 (2011). es_ES
dc.description.references Gu, J.-M., Kim, W.-S. & Huh, S. Size-dependent catalysis by DABCO-functionalized Zn-MOF with one-dimensional channels. Dalton Trans. 40, 10826–10829 (2011). es_ES
dc.description.references Carson, C. G. et al. Synthesis and structure characterization of copper terephthalate metal–organic frameworks. Eur. J. Inorg. Chem. 2009, 2338–2343 (2009). es_ES
dc.description.references Yang, Q. et al. Probing the adsorption performance of the hybrid porous MIL-68(Al): a synergic combination of experimental and modelling tools. J. Mater. Chem. 22, 10210–10220 (2012). es_ES
dc.description.references Li, H. et al. Visible light-driven water oxidation promoted by host-guest interaction between photosensitizer and catalyst with a high quantum efficiency. J. Am. Chem. Soc. 137, 4332–4335 (2015). es_ES
dc.description.references Hapiot, F., Bricout, H., Menuel, S., Tilloy, S. & Monflier, E. Recent breakthroughs in aqueous cyclodextrin-assisted supramolecular catalysis. Catal. Sci. Technol. 4, 1899–1908 (2014). es_ES
dc.description.references Harada, A., Takashima, Y. & Nakahata, M. Supramolecular polymeric materials via cyclodextrin-guest interactions. Acc. Chem. Res. 47, 2128–2140 (2014). es_ES
dc.description.references Cong, H. et al. Substituent effect of substrates on cucurbit[8]uril-catalytic oxidation of aryl alcohols. J. Mol. Catal. A Chem. 374-375, 32–38 (2013). es_ES
dc.description.references Masson, E., Ling, X., Joseph, R., Kyeremeh-Mensah, L. & Lu, X. Cucurbituril chemistry: a tale of supramolecular success. RSC Adv. 2, 1213–1247 (2012). es_ES
dc.description.references Song, F.-T., Ouyang, G.-H., Li, Y., He, Y.-M. & Fan, Q.-H. Metallacrown ether catalysts containing phosphine-phosphite polyether ligands for Rh-catalyzed asymmetric hydrogenation—enhancements in activity and enantioselectivity. Eur. J. Org. Chem. 2014, 6713–6719 (2014). es_ES
dc.description.references Rebilly, J.-N. & Reinaud, O. Calixarenes and resorcinarenes as scaffolds for supramolecular metallo-enzyme mimicry. Supramol. Chem. 26, 454–479 (2014). es_ES
dc.description.references Ajami, D., Liu, L. & Rebek, J. Jr Soft templates in encapsulation complexes. Chem. Soc. Rev. 44, 490–499 (2015). es_ES
dc.description.references Corma, A. & Garcia, H. Supramolecular host-guest systems in zeolites prepared by ship-in-a-bottle synthesis. Eur. J. Inorg. Chem. 2004, 1143–1164 (2004). es_ES
dc.description.references Kemp, D. S., Cox, D. D. & Paul, K. G. Physical organic chemistry of benzisoxazoles. IV. Origins and catalytic nature of the solvent rate acceleration for the decarboxylation of 3-carboxybenzisoxazoles. J. Am. Chem. Soc. 97, 7312–7318 (1975). es_ES
dc.description.references Thorn, S. N., Daniels, R. G., Auditor, M. T. & Hilvert, D. Large rate accelerations in antibody catalysis by strategic use of haptenic charge. Nature 373, 228–230 (1995). es_ES
dc.description.references Yoshizawa, M., Klosterman, J. K. & Fujita, M. Functional molecular flasks: new properties and reactions within discrete, self-assembled hosts. Angew. Chem. Int. Ed. 48, 3418–3438 (2009). es_ES
dc.description.references Yoshizawa, M., Tamura, M. & Fujita, M. Diels-Alder in aqueous molecular hosts: unusual regioselectivity and efficient catalysis. Science 312, 251–254 (2006). es_ES
dc.description.references Murase, T., Nishijima, Y. & Fujita, M. Cage-catalyzed knoevenagel condensation under neutral conditions in water. J. Am. Chem. Soc. 134, 162–164 (2012). es_ES
dc.description.references Zhao, C., Toste, F. D., Raymond, K. N. & Bergman, R. G. Nucleophilic substitution catalyzed by a supramolecular cavity proceeds with retention of absolute stereochemistry. J. Am. Chem. Soc. 136, 14409–14412 (2014). es_ES
dc.description.references Choi, M. et al. Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts. Nature 461, 246–249 (2009). es_ES
dc.description.references Loiseau, T. et al. MIL-96, a porous aluminum trimesate 3D structure constructed from a hexagonal network of 18-membered rings and μ3-Oxo-centered trinuclear units. J. Am. Chem. Soc. 128, 10223–10230 (2006). es_ES
dc.description.references Bezverkhyy, I. et al. MIL-53(Al) under reflux in water: formation of γ-AlO(OH) shell and H2BDC molecules intercalated into the pores. Micropor. Mesopor. Mat. 183, 156–161 (2014). es_ES
dc.description.references Wang, L.-M. et al. Sodium stearate-catalyzed multicomponent reactions for efficient synthesis of spirooxindoles in aqueous micellar media. Tetrahedron 66, 339–343 (2010). es_ES
dc.description.references List B. Science of Synthesis: Asymmetric Organocatalysis 1, Lewis Base and Acid Catalysts Georg Thieme Verlag (2012). es_ES
dc.description.references He, T., Gu, Q. & Wu, X.-Y. Highly enantioselective Michael addition of isobutyraldehyde to nitroalkenes. Tetrahedron 66, 3195–3198 (2010). es_ES
dc.description.references Avila, A., Chinchilla, R., Fiser, B., Gómez-Bengoa, E. & Nájera, C. Enantioselective Michael addition of isobutyraldehyde to nitroalkenes organocatalyzed by chiral primary amine-guanidines. Tetrahedron Asymmetry 25, 462–467 (2014). es_ES
dc.description.references Meyer, B. & Peters, T. NMR spectroscopy techniques for screening and identifying ligand binding to protein receptors. Angew. Chem. Int. Ed. 42, 864–890 (2003). es_ES
dc.description.references Szczygiel, A., Timmermans, L., Fritzinger, B. & Martins, J. C. Widening the view on dispersant−pigment interactions in colloidal dispersions with saturation transfer difference NMR spectroscopy. J. Am. Chem. Soc. 131, 17756–17758 (2009). es_ES
dc.description.references Basilio, N., Martín-Pastor, M. & García-Río, L. Insights into the structure of the supramolecular amphiphile formed by a sulfonated calix[6]arene and alkyltrimethylammonium surfactants. Langmuir 28, 6561–6568 (2012). es_ES
dc.description.references Mayer, M. & Meyer, B. Characterization of ligand binding by saturation transfer difference NMR spectroscopy. Angew. Chem. Int. Ed. 38, 1784–1788 (1999). es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem