- -

Molecular gated nanoporous anodic alumina for the detection of cocaine

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Molecular gated nanoporous anodic alumina for the detection of cocaine

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ribes, Àngela es_ES
dc.contributor.author Xifre Perez, Elisabet es_ES
dc.contributor.author Aznar, Elena es_ES
dc.contributor.author Sancenón Galarza, Félix es_ES
dc.contributor.author Pardo Vicente, María Teresa es_ES
dc.contributor.author Marsal, Lluis F. es_ES
dc.contributor.author Martínez-Máñez, Ramón es_ES
dc.date.accessioned 2017-09-28T12:00:30Z
dc.date.available 2017-09-28T12:00:30Z
dc.date.issued 2016-12-07
dc.identifier.issn 2045-2322
dc.identifier.uri http://hdl.handle.net/10251/88178
dc.description.abstract [EN] We present herein the use of nanoporous anodic alumina (NAA) as a suitable support to implement molecular gates for sensing applications. In our design, a NAA support is loaded with a fluorescent reporter (rhodamine B) and functionalized with a short single-stranded DNA. Then pores are blocked by the subsequent hybridisation of a specific cocaine aptamer. The response of the gated material was studied in aqueous solution. In a typical experiment, the support was immersed in hybridisation buffer solution in the absence or presence of cocaine. At certain times, the release of rhodamine B from pore voids was measured by fluorescence spectroscopy. The capped NAA support showed poor cargo delivery, but presence of cocaine in the solution selectively induced rhodamine B release. By this simple procedure a limit of detection as low as 5 × 10−7 M was calculated for cocaine. The gated NAA was successfully applied to detect cocaine in saliva samples and the possible re-use of the nanostructures was assessed. Based on these results, we believe that NAA could be a suitable support to prepare optical gated probes with a synergic combination of the favourable features of selected gated sensing systems and NAA. es_ES
dc.description.sponsorship We thank Projects MAT2015-64139-C4-1-R and TEC2015-71324-R (MINECO/FEDER), the Catalan Government (Project 2014 SGR 1344), the ICREA (ICREA2014 Academia Award) and the Generalitat Valenciana (Project PROMETEOII/2014/047) for support. We also thank to the Agencia Espanola del Medicamento y Productos Sanitarios for its concessions. A.R. thanks the UPV for her predoctoral fellowship. The authors also thank the Electron Microscopy Service at UPV for support. en_EN
dc.language Inglés es_ES
dc.publisher Nature Publishing Group es_ES
dc.relation.ispartof Scientific Reports es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject BIORESPONSIVE CONTROLLED-RELEASE es_ES
dc.subject MESOPOROUS SILICA NANOPARTICLES es_ES
dc.subject RESPONSIVE DRUG-DELIVERY es_ES
dc.subject APTAMER-BASED SENSOR es_ES
dc.subject ORAL FLUID es_ES
dc.subject DNA es_ES
dc.subject SYSTEMS es_ES
dc.subject PLATFORM es_ES
dc.subject SPECIFICITY es_ES
dc.subject APTASENSOR es_ES
dc.subject Electron Microscopy Service of the UPV
dc.subject.classification QUIMICA INORGANICA es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.subject.classification QUIMICA ANALITICA es_ES
dc.title Molecular gated nanoporous anodic alumina for the detection of cocaine es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1038/srep38649
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2015-64139-C4-1-R/ES/NANOMATERIALES INTELIGENTES, SONDAS Y DISPOSITIVOS PARA EL DESARROLLO INTEGRADO DE NUEVAS HERRAMIENTAS APLICADAS AL CAMPO BIOMEDICO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Generalitat de Catalunya//2014 SGR 1344/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2014%2F047/ES/Nuevas aproximaciones para el diseño de materiales de liberación controlada y la detección de compuestos peligrosos/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TEC2015-71324-R/ES/DESARROLLO DE CELULAS SOLARES ORGANICAS FOTOVOLTAICAS Y BIOSENSORES FOTONICOS BASADOS EN MICRO -NANOESTRUCTURAS POROSAS Y POLIMEROS NANOESTRUCTURADOS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingenieros Industriales - Escola Tècnica Superior d'Enginyers Industrials es_ES
dc.contributor.affiliation Universitat Politècnica de València. Centro de Tecnologías Físicas: Acústica, Materiales y Astrofísica - Centre de Tecnologies Físiques: Acústica, Materials i Astrofísica es_ES
dc.contributor.affiliation Universitat Politècnica de València. Escuela Técnica Superior de Ingeniería del Diseño - Escola Tècnica Superior d'Enginyeria del Disseny es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Reconocimiento Molecular y Desarrollo Tecnológico - Institut de Reconeixement Molecular i Desenvolupament Tecnològic es_ES
dc.description.bibliographicCitation Ribes, À.; Xifre Perez, E.; Aznar, E.; Sancenón Galarza, F.; Pardo Vicente, MT.; Marsal, LF.; Martínez-Máñez, R. (2016). Molecular gated nanoporous anodic alumina for the detection of cocaine. Scientific Reports. 6. https://doi.org/10.1038/srep38649 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1038/srep38649 es_ES
dc.description.upvformatpinicio 38649 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 6 es_ES
dc.relation.senia 322618 es_ES
dc.identifier.pmid 27924950
dc.identifier.pmcid PMC5141502 en_EN
dc.contributor.funder Ministerio de Economía y Competitividad
dc.contributor.funder Generalitat Valenciana
dc.contributor.funder Generalitat de Catalunya
dc.description.references Nadrah, P., Planinšek, O. & Gaberšček, M. Stimulus-responsive Mesoporous Silica Particles. J. Mater. Sci. 49, 481–495 (2014). es_ES
dc.description.references Baeza, A., Colilla, M. & Vallet-Regí, M. Advances in Mesoporous Silica Nanoparticles for Targeted Stimuli-Responsive Drug Delivery. Expert Opin. Drug Deliv. 12, 319–337 (2015). es_ES
dc.description.references Karimi, M., Mirshekari, H., Aliakbari, M., Zangabad, P. S. & Hamblin, M. R. Smart Mesoporous Silica Nanoparticles for Controlled-Release Drug Delivery. Nanotech. Rev. 5, 195–207 (2016). es_ES
dc.description.references Aznar, E. et al. Gated Materials for On-Command Release of Guest Molecules. Chem. Rev. 116, 561−718 (2016). es_ES
dc.description.references Sancenón, F., Pascual, Ll., Oroval, M., Aznar, E. & Martínez-Máñez, R. Gated Silica Mesoporous Materials in Sensing Applications. Chemistry Open. 4, 418–437 (2015). es_ES
dc.description.references Lu, C.-H., Willner, B. & Willner, I. DNA nanotechnology: From sensing and DNA machines to drug-delivery systems. ACSNano 7, 8320–8332 (2013). es_ES
dc.description.references Klajn, R., Stoddart, J. F. & Grzybowski, B. A. Nanoparticles Functionalized With Reversible Molecular And Supramolecular Switches. Chem. Soc. Rev. 39, 2203–2237 (2010). es_ES
dc.description.references Wei, R., Martin, T. G., Rant, U. & Dietz, H. DNA Origami Gatekeepers for Solid-State Nanopores. Angew. Chem. Int. Ed. 51, 4864 4867 (2012). es_ES
dc.description.references Zhu, C. L., Lu, C. H., Song, X. Y., Yang, H. H. & Wang, X. R. Bioresponsive Controlled Release Using Mesoporous Silica Nanoparticles Capped with Aptamer-Based Molecular Gate. J. Am. Chem. Soc. 133, 1278–1281 (2011). es_ES
dc.description.references Özalp, V. C., Pinto, A., Nikulina, E., Chulivin, A. & Schäfer, T. In Situ Monitoring of DNA-Aptavalve Gating Function on Mesoporous Silica Nanoparticles. Part. Part. Sys. Charact. 31, 161–167 (2014). es_ES
dc.description.references Choi, Y. L., Jaworski, J., Seo, M. L., Lee, S. J. & Jung, J. H. Controlled release using mesoporous silica nanoparticles functionalized with 18-crown-6 derivative. J. Mater. Chem. 21, 7882–7885 (2011). es_ES
dc.description.references Zhang, Z., Wang, F., Balogh, D. & Willner, I. pH-controlled release of substrates from mesoporous SiO2 nanoparticles gated by metal ion-dependent DNAzymes. J. Mater. Chem. B. 2, 4449–4455 (2014). es_ES
dc.description.references Fu, L. et al. Portable and Quantitative Monitoring of Heavy Metal Ions Using Dnazyme-Capped Mesoporous Silica Nanoparticles with a Glucometer Readout. J. Mater. Chem. B. 1, 6123–6128 (2013). es_ES
dc.description.references Díez, P. et al. Toward the Design of Smart Delivery Systems Controlled by Integrated Enzyme-Based Biocomputing Ensembles. J. Am. Chem. Soc. 136, 9116–9123 (2014). es_ES
dc.description.references Tang, D. et al. Low-Cost and Highly Sensitive lmmunosensing Platform for Aflatoxins Using One-Step Competitive Displacement Reaction Mode and Portable Glucometer-Based Detection. Anal. Chem. 86, 11451–11458 (2014). es_ES
dc.description.references Hou, L., Zhu, C., Wu, X., Chen, G. & Tang, D. Bioresponsive Controlled Release from Mesoporous Silica Nanocontainers with Glucometer Readout. Chem. Commun. 50, 1441–1443 (2014). es_ES
dc.description.references Chen, Z. et al. Stimulus-response mesoporous silica nanoparticle-based chemiluminescence biosensor for cocaine determination. Biosens. Bioelectro. 75, 8–14 (2016). es_ES
dc.description.references Pascual, L. L. et al. Oligonucleotide-Capped Mesoporous Silica Nanoparticles as DNA-Responsive Dye Delivery Systems for Genomic DNA Detection. Chem. Commun. 51, 1414–1416 (2015). es_ES
dc.description.references Qian, R., Ding, I. & Ju, H. Switchable Fluorescent Imaging of Intracellular Telomerase Activity Using Telomerase-Responsive Mesoporous Silica Nanoparticle. J. Am. Chem. Soc. 135, 13282–13285 (2013). es_ES
dc.description.references Ren, K., Wu, J., Zhang, Y., Yan, F. & Ju, H. Proximity Hybridization Regulated DNA Biogate for Sensitive Electrochemical Immunoassay. Anal. Chem. 86, 7494–7499 (2014). es_ES
dc.description.references Chen, Y., Santos, A., Wang, Y., Wang, C. & Losic, D. Biomimetic Nanoporous Anodic Alumina Distributed Bragg Reflectors in the Form of Films and Microsized Particles for Sensing Applications. ACS Appl Mater Interfaces. 7, 19816–19824 (2015). es_ES
dc.description.references Aw, M. S., Bariana, M. & Losic, D. In Nanoporous Alumina. Fabrication, Structure, Properties and Applications (ed. Losic, D., Santos, A. ) 319–354 (Springer International Publishing, 2015). es_ES
dc.description.references Urteaga, R. & Berli, C. L. In Nanoporous Alumina. Fabrication, Structure, Properties and Applications (ed. Losic, D., Santos, A. ) 249–269 (Springer International Publishing, 2015). es_ES
dc.description.references Vojkuvka, L., Marsal, L. F., Ferré-Borrull, J., Formentin, P. & Pallarés, J. Self-Ordered Porous Alumina Membranes with Large Lattice Constant Fabricated by Hard Anodization. Superlattices Microstruct. 44, 577–582 (2008). es_ES
dc.description.references De la Escosura-Muñiz, A. & Merkoçi, A. Nanochannels Preparation and Application in Biosensing. ACS Nano. 6, 7556–7583 (2012). es_ES
dc.description.references Kumeria, T. et al. Nanoporous Anodic Alumina Rugate Filters for Sensing of Ionic Mercury: Toward Environmental Point-of-Analysis Systems. ACS Appl. Mater. Interfaces. 6, 12971−12978 (2014). es_ES
dc.description.references Santos, A., Kumeria, T. & Losic, D. Nanoporous Anodic Alumina: A Versatile Platform for Optical Biosensors. Materials. 7, 4297–4320 (2014). es_ES
dc.description.references Ferré-Borrull, J., Pallarès, J., Macías, G. & Marsal, L. F. Nanostructural Engineering of Nanoporous Anodic Alumina for Biosensing Applications. Materials. 7, 5225–5253 (2014). es_ES
dc.description.references Gong, D., Yadavalli, V., Paulose, M., Pishko, M. & Grimes, C. A. Controlled Molecular Release Using Nanoporous Alumina Capsules. Biomed Microdevices. 5, 75–80 (2003). es_ES
dc.description.references Alvarez, S. D., Li, C.-P., Chiang, C. E., Schuller, I. K. & Sailor, M. J. A Label-Free Porous Alumina Interferometric Immunosensor. ACSNano. 3, 3301–3307 (2009). es_ES
dc.description.references Krismastuti, F. S. H., Bayat, H., Voelcker, N. H. & Schönherr, H. Real Time Monitoring of Layer-by-Layer Polyelectrolyte Deposition and Bacterial Enzyme Detection in Nanoporous Anodized Aluminum Oxide Anal. Chem. 87, 3856–3863 (2015). es_ES
dc.description.references Ma, D.-L. et al. A Luminescent Cocaine Detection Platform Using a Split G-Quadruplex-Selective Iridium (III) Complex and a Three-Way DNA Junction Architecture. ACS Appl. Mater. Interfaces. 7, 19060−19067 (2015). es_ES
dc.description.references Kohli, P. et al. DNA-Functionalized Nanotube Membranes with Single-Base Mismatch Selectivity. Science 305, 984–986 (2004). es_ES
dc.description.references Abelow, A. E. et al. Biomimetic glass nanopores employing aptamer gates responsive to a small molecule. Chem. Commun. 46, 7984–7986 (2010). es_ES
dc.description.references Ma, D.-L., Chan, D. S.-H. & Leung, C.-H. Group 9 Organometallic Compounds for Therapeutic and Bioanalytical Applications. Acc. Chem. Res. 47, 3614–3631 (2014). es_ES
dc.description.references Wanga, G., Zhua, Y., Chena, L. & Zhanga, X. Photoinduced electron transfer (PET) based label-free aptasensor for platelet-derived growth factor-BB and its logic gate application. Biosens. Bioelectron. 63, 552–557 (2015). es_ES
dc.description.references Laptenko, O. et al. The p53 C Terminus Controls Site-Specific DNA Binding and Promotes Structural Changes within the Central DNA Binding Domain. Molec. Cell. 57, 1034–1046 (2015). es_ES
dc.description.references McKeague, M. & DeRosa, M. C. Challenges and Opportunities for Small Molecule Aptamer Development. J. Nucleic Acids. 2012, 1–20 (2012). es_ES
dc.description.references McKeague, M. et al. Analysis of In Vitro Aptamer Selection Parameters, J. Mol. Evol. 81, 150–161 (2015). es_ES
dc.description.references Ellington, A. D. & Szostak, J. W. In vitro selection of RNA molecules that bind specific ligands. Nature. 346, 818–822 (1990). es_ES
dc.description.references Wochner, A. et al. A DNA aptamer with high affinity and specificity for therapeutic anthracyclines. Anal Biochem. 373, 34–42 (2008). es_ES
dc.description.references Song, K. M., Jeong, E., Jeon, W., Cho, M. & Ban, C. Aptasensor for ampicillin using gold nanoparticle based dual fluorescence-colorimetric methods. Anal. Bioanal. Chem. 402, 2153–2161 (2012). es_ES
dc.description.references Özalp, V. C. & Schäfer, T. Aptamer-Based Switchable Nanovalves for Stimuli-Responsive Drug Delivery. Chem. Eur. J. 17, 9893–9896 (2011). es_ES
dc.description.references Stojanovic, M. N., de Prada, P. & Landry, D. W. Aptamer-Based Folding Fluorescent Sensor for Cocaine. J. Am. Chem Soc. 123, 4928–4931 (2001). es_ES
dc.description.references Wen, Y. et al. DNA-based intelligent logic controlled release systems. Chem. Commun. 48, 8410–8412 (2012). es_ES
dc.description.references Chen, L. et al. Programmable DNA switch for bioresponsive controlled release. J. Mater. Chem. 21, 13811–13816 (2011). es_ES
dc.description.references Oroval, M. et al. An aptamer-gated silica mesoporous material for thrombin detection. Chem. Commun. 49, 5480–5482 (2013). es_ES
dc.description.references Barroso, M., Gallardo, E. & Queiroz, J. A. Bioanalytical methods for the determination of cocaine and metabolites in human biological samples. Bioanalysis. 1, 977–1000 (2009). es_ES
dc.description.references Phan, H. M., Yoshizuka, K., Murry, D. J. & Perry, P. J. Drug testing in the workplace. Pharmacotherapy. 32, 649–656 (2012). es_ES
dc.description.references Kidwell, D. A., Blanco, M. A. & P. Smith, F. P. Cocaine detection in a university population by hair analysis and skin swab testing. Forensic Sci. Int. 84, 75–86 (1997). es_ES
dc.description.references Swensen, J. S. et al. Continuous, Real-Time Monitoring of Cocaine in Undiluted Blood Serum via a Microfluidic, Electrochemical Aptamer-Based Sensor. J. Am. Chem. Soc. 131, 4262–4266 (2009). es_ES
dc.description.references Cai, Q. et al. Determination of cocaine on banknotes through an aptamer-based electrochemiluminescence biosensor. Anal. Bioanal. Chem. 400, 289–294 (2011). es_ES
dc.description.references Zou, R. et al. Highly specific triple-fragment aptamer for optical detection of cocaine. RSC Adv. 2, 4636–4638 (2012). es_ES
dc.description.references Qiu, L. et al. A novel label-free fluorescence aptamer-based sensor method for cocaine detection based on isothermal circular strand-displacement amplification and graphene oxide absorption. New J. Chem. 37, 3998 (2013). es_ES
dc.description.references Marsal, L. F., Vojkuvka, L., Formentin, P., Pallarés, J. & Ferré-Borrull, J. Fabrication and Optical Characterization of Nanoporous Alumina Films Annealed at Different Temperatures. Optical Mater. 31, 860–864 (2009). es_ES
dc.description.references Bosker, W. M. & Huestis, M. A. Oral Fluid Testing for Drugs of Abuse. Clinical Chem. 55, 1910–1931 (2009). es_ES
dc.description.references Kolbrich, E. A. et al. Cozart® RapiScan Oral Fluid Drug Testing System: An Evaluation of Sensitivity, Specificity, and Efficiency for Cocaine Detection Compared with ELISA and GC-MS Following Controlled Cocaine Administration. J. Anal Toxicol. 27, 407–411 (2003). es_ES
dc.description.references Cooper, G., Wilson, L., Reid, C., Main, L. & Hand, C. Evaluation of the Cozart® RapiScan drug test system for opiates and cocaine in oral fluid. Forensic Sci. Int. 150, 239–243 (2005). es_ES
dc.description.references Chang, Y. H. et al. Cocaine detection by a mid-infrared waveguide integrated with a microfluidic chip. Lab Chip. 12, 3020–3023 (2012). es_ES
dc.description.references Walczak, R. et al. Toward Portable Instrumentation for Quantitative Cocaine Detection with Lab-on-a-Paper and Hybrid Optical Readout. Procedia Chem. 1, 999–1002 (2009). es_ES
dc.description.references Qiu, L. et al. A novel label-free fluorescence aptamer-based sensor method for cocaine detection based on isothermal circular strand-displacement amplification and graphene oxide absorption. New J. Chem. 37, 3998–4003 (2013). es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem