Mostrar el registro sencillo del ítem
dc.contributor.author | Nadal, E. | es_ES |
dc.contributor.author | Leygue, A. | es_ES |
dc.contributor.author | Chinesta, F. | es_ES |
dc.contributor.author | Beringhier, M. | es_ES |
dc.contributor.author | Ródenas, J.J. | es_ES |
dc.contributor.author | Fuenmayor Fernández, Francisco Javier | es_ES |
dc.date.accessioned | 2017-09-29T12:42:32Z | |
dc.date.available | 2017-09-29T12:42:32Z | |
dc.date.issued | 2015-02 | |
dc.identifier.issn | 0178-7675 | |
dc.identifier.uri | http://hdl.handle.net/10251/88299 | |
dc.description.abstract | [EN] Today industries do not only require fast simulation techniques but also verification techniques for the simulations. The proper generalized decomposition (PGD) has been situated as a suitable tool for fast simulation for many physical phenomena. However, so far, verification tools for the PGD are under development. The PGD approximation error mainly comes from two different sources. The first one is related with the truncation of the PGD approximation and the second one is related with the discretization error of the underlying numerical technique. In this work we propose a fast error indicator technique based on recovery techniques, for the discretization error of the numerical technique used by the PGD technique, for refinement purposes. | es_ES |
dc.description.sponsorship | Authors 5 and 6 thank the financial support of the research Project DPI2013-46317-R of the Ministerio de Economia y Competitividad (Spain). The funding from Universitat Politecnica de Valencia and Generalitat Valenciana (PROMETEO/2012/023) are also acknowledged. These authors also thank the support of the Framework Programme 7 Initial Training Network Funding under Grant number 289361 "Integrating Numerical Simulation and Geometric Design Technology". | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | Springer Verlag (Germany) | es_ES |
dc.relation.ispartof | Computational Mechanics | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Verification | es_ES |
dc.subject | Error estimation | es_ES |
dc.subject | Proper generalized decomposition | es_ES |
dc.subject | Adaptive mesh refinement | es_ES |
dc.subject.classification | INGENIERIA MECANICA | es_ES |
dc.title | A separated representation of an error indicator for the mesh refinement process under the proper generalized decomposition framework | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s00466-014-1097-y | |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/FP7/289361/EU/Integrating Numerical Simulation and Geometric Design Technology/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//DPI2013-46317-R/ES/PERSONALIZACION DE IMPLANTES MEDIANTE MODELOS DE ELEMENTOS FINITOS A PARTIR DE IMAGENES MEDICAS 3D/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2012%2F023/ES/MODELADO NUMERICO AVANZADO EN INGENIERIA MECANICA/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials | es_ES |
dc.description.bibliographicCitation | Nadal, E.; Leygue, A.; Chinesta, F.; Beringhier, M.; Ródenas, J.; Fuenmayor Fernández, FJ. (2015). A separated representation of an error indicator for the mesh refinement process under the proper generalized decomposition framework. Computational Mechanics. 55(2):251-266. https://doi.org/10.1007/s00466-014-1097-y | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://dx.doi.org/10.1007/s00466-014-1097-y | es_ES |
dc.description.upvformatpinicio | 251 | es_ES |
dc.description.upvformatpfin | 266 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 55 | es_ES |
dc.description.issue | 2 | es_ES |
dc.relation.senia | 290105 | |
dc.identifier.eissn | 1432-0924 | |
dc.contributor.funder | European Commission | |
dc.contributor.funder | Ministerio de Economía y Competitividad | |
dc.contributor.funder | Universitat Politècnica de València | |
dc.contributor.funder | Generalitat Valenciana | |
dc.description.references | Ammar A, Mokdad B, Chinesta F, Keunings R (2006) A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids. J Non-Newton Fluid Mech 139:153–176 | es_ES |
dc.description.references | Ammar A, Mokdad B, Chinesta F, Keunings R (2007) A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modelling of complex fluids. J Non-Newton Fluid Mech 144:98–121 | es_ES |
dc.description.references | Chinesta F, Ladeveze P, Cueto E (2011) A short review on model order reduction based on proper generalized decomposition. Arch Comput Methods Eng 18:395–404 | es_ES |
dc.description.references | Giner E, Bognet B, Ródenas JJ, Leygue A, Fuenmayor FJ, Chinesta F (2013) The proper generalized decomposition (PGD) as a numerical procedure to solve 3D cracked plates in linear elastic fracture mechanics. Int J Solids Struct 50:1710–1720 | es_ES |
dc.description.references | Chinesta F, Ammar A, Leygue A, Keunings R (2011) An overview of the proper generalized decomposition with applications in computational rheology. J Non-Newton Fluid Mech 166(11):578–592 | es_ES |
dc.description.references | Ammar A, Chinesta F, Diez P, Huerta A (2010) An error estimator for separated representations of highly multidimensional models. Comput Methods Appl Mech Eng 199(25–28):1872–1880 | es_ES |
dc.description.references | Moitinho de Almeida JP (2013) A basis for bounding the errors of proper generalised decomposition solutions in solid mechanics. Int J Numer Methods Eng 94:961–984 | es_ES |
dc.description.references | Ladevèze P, Chamoin L (2011) On the verification of model reduction methods based on the proper generalized decomposition. Comput Methods Appl Mech Eng 200:2032–2047 | es_ES |
dc.description.references | Ladevèze P, Leguillon D (1983) Error estimate procedure in the finite element method and applications. SIAM J Numer Anal 20(3):485–509 | es_ES |
dc.description.references | Babuška I, Rheinboldt WC (1978) A-posteriori error estimates for the finite element method. Int J Numer Methods Eng 12(10):1597–1615 | es_ES |
dc.description.references | Ródenas JJ, Tur M, Fuenmayor FJ, Vercher A (2007) Improvement of the superconvergent patch recovery technique by the use of constraint equations: the SPR-C technique. Int J Numer Methods Eng 70(6):705–727 | es_ES |
dc.description.references | Díez P, Parés N, Huerta A (2003) Recovering lower bounds of the error by postprocessing implicit residual a posteriori error estimates. Int J Numer Methods Eng 56(10):1465–1488 | es_ES |
dc.description.references | Bognet B, Bordeu F, Chinesta F, Leygue A, Poitou A (2012) Advanced simulation of models defined in plate geometries: 3D solutions with 2D computational complexity. Comput Methods Appl Mech Eng 201–204:1–12 | es_ES |
dc.description.references | Bognet B, Leygue A, Chinesta F (2014) Separated representations of 3D elastic solutions in shell geometries. Adv Model Simul Eng Sci 1(1):1–4 | es_ES |
dc.description.references | Ghnatios C, Chinesta F, Binetruy C (2013) 3D modeling of squeeze flows occurring in composite laminates. Int J Mater Form 9(1):1–11 | es_ES |
dc.description.references | Zienkiewicz OC, Zhu JZ (1987) A simple error estimator and adaptive procedure for practical engineering analysis. Int J Numer Methods Eng 24(2):337–357 | es_ES |
dc.description.references | Chinesta F, Keunings R, Leygue A (2013) The proper generalized decomposition for advanced numerical simulations: a primer. Springer Publishing Company, New York Incorporated | es_ES |
dc.description.references | Donea J, Huerta A (2002) Finite element methods for flow problems. Wiley, New York | es_ES |
dc.description.references | Gonzalez D, Cueto E, Chinesta F, Diez P, Huerta A (2013) SUPG-based stabilization of proper generalized decompositions for high-dimensional advection-diffusion equations. Int J Numer Methods Eng 94(13):1216–1232 | es_ES |
dc.description.references | Chinesta F, Ammar A, Cueto E (2010) Recent advances and new challenges in the use of the proper generalized decomposition for solving multidimensional models. Arch Comput Methods Eng 17(4):327–350 | es_ES |
dc.description.references | Chinesta F, Leygue A, Bordeu F, Aguado JV, Cueto E, Gonzalez D, Alfaro I, Ammar A, Huerta A (2013) PGD-based computational vademecum for efficient design, optimization and control. Arch Comput Methods Eng 20:31–59 | es_ES |
dc.description.references | Zienkiewicz OC, Zhu JZ (1992) The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique. Int J Numer Methods Eng 33(7):1331–1364 | es_ES |
dc.description.references | Zienkiewicz OC, Zhu JZ (1992) The superconvergent patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity. Int J Numer Methods Eng 33(7):1365–1382 | es_ES |
dc.description.references | Kvamsdal T, Okstad KM (1998) Error estimation based on superconvergent patch recovery using statically admissible stress fields. Int J Numer Methods Eng 42(3):443–472 | es_ES |
dc.description.references | Wiberg NE, Abdulwahab F (1993) Patch recovery based on superconvergent derivatives and equilibrium. Int J Numer Methods Eng 36(16):2703–2724 | es_ES |
dc.description.references | Wiberg NE, Abdulwahab F, Ziukas S (1994) Enhanced superconvergent patch recovery incorporating equilibrium and boundary conditions. Int J Numer Methods Eng 37(20):3417–3440 | es_ES |
dc.description.references | Blacker T, Belytschko T (1994) Superconvergent patch recovery with equilibrium and conjoint interpolant enhancements. Int J Numer Methods Eng 37(3):517–536 | es_ES |
dc.description.references | Ródenas JJ, González-Estrada OA, Tarancón JE, Fuenmayor FJ (2008) A recovery-type error estimator for the extended finite element method based on singular+smooth stress field splitting. Int J Numer Methods Eng 76(4):545–571 | es_ES |
dc.description.references | Ródenas JJ, González-Estrada OA, Díez P, Fuenmayor FJ (2010) Accurate recovery-based upper error bounds for the extended finite element framework. Comput Methods Appl Mech Eng 199(37–40):2607–2621 | es_ES |
dc.description.references | Nadal E, (2014) Cartesian grid FEM (cgFEM): high performance h-adaptive FE analysis with efficient error control. Application to structural shape optimization. PhD thesis, Universitat Politècnica de València | es_ES |
dc.description.references | Karihaloo BL, Xiao QZ (2003) Modelling of stationary and growing cracks in FE framework without remeshing: a state-of-the-art review. Comput Struct 81(3):119–129 | es_ES |
dc.description.references | González-Estrada OA, Ródenas JJ, Chinesta F, Fuenmayor FJ (2013) Enhanced error estimator based on a nearly equilibrated moving least squares recovery technique for FEM and XFEM. Comput Mech 52:321–344 | es_ES |
dc.description.references | Fuenmayor FJ, Oliver JL (1996) Criteria to achieve nearly optimal meshes in the h-adaptive finite element mehod. Int J Numer Methods Eng 39(23):4039–4061 | es_ES |
dc.description.references | Fuenmayor F, Restrepo J, Tarancón J, Baeza L (2001) Error estimation and h-adaptive refinement in the analysis of natural frequencies. Finite Elem Anal Des 38:137–153 | es_ES |