- -

A separated representation of an error indicator for the mesh refinement process under the proper generalized decomposition framework

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A separated representation of an error indicator for the mesh refinement process under the proper generalized decomposition framework

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Nadal, E. es_ES
dc.contributor.author Leygue, A. es_ES
dc.contributor.author Chinesta, F. es_ES
dc.contributor.author Beringhier, M. es_ES
dc.contributor.author Ródenas, J.J. es_ES
dc.contributor.author Fuenmayor Fernández, Francisco Javier es_ES
dc.date.accessioned 2017-09-29T12:42:32Z
dc.date.available 2017-09-29T12:42:32Z
dc.date.issued 2015-02
dc.identifier.issn 0178-7675
dc.identifier.uri http://hdl.handle.net/10251/88299
dc.description.abstract [EN] Today industries do not only require fast simulation techniques but also verification techniques for the simulations. The proper generalized decomposition (PGD) has been situated as a suitable tool for fast simulation for many physical phenomena. However, so far, verification tools for the PGD are under development. The PGD approximation error mainly comes from two different sources. The first one is related with the truncation of the PGD approximation and the second one is related with the discretization error of the underlying numerical technique. In this work we propose a fast error indicator technique based on recovery techniques, for the discretization error of the numerical technique used by the PGD technique, for refinement purposes. es_ES
dc.description.sponsorship Authors 5 and 6 thank the financial support of the research Project DPI2013-46317-R of the Ministerio de Economia y Competitividad (Spain). The funding from Universitat Politecnica de Valencia and Generalitat Valenciana (PROMETEO/2012/023) are also acknowledged. These authors also thank the support of the Framework Programme 7 Initial Training Network Funding under Grant number 289361 "Integrating Numerical Simulation and Geometric Design Technology". en_EN
dc.language Inglés es_ES
dc.publisher Springer Verlag (Germany) es_ES
dc.relation.ispartof Computational Mechanics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Verification es_ES
dc.subject Error estimation es_ES
dc.subject Proper generalized decomposition es_ES
dc.subject Adaptive mesh refinement es_ES
dc.subject.classification INGENIERIA MECANICA es_ES
dc.title A separated representation of an error indicator for the mesh refinement process under the proper generalized decomposition framework es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s00466-014-1097-y
dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/289361/EU/Integrating Numerical Simulation and Geometric Design Technology/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//DPI2013-46317-R/ES/PERSONALIZACION DE IMPLANTES MEDIANTE MODELOS DE ELEMENTOS FINITOS A PARTIR DE IMAGENES MEDICAS 3D/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2012%2F023/ES/MODELADO NUMERICO AVANZADO EN INGENIERIA MECANICA/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.description.bibliographicCitation Nadal, E.; Leygue, A.; Chinesta, F.; Beringhier, M.; Ródenas, J.; Fuenmayor Fernández, FJ. (2015). A separated representation of an error indicator for the mesh refinement process under the proper generalized decomposition framework. Computational Mechanics. 55(2):251-266. https://doi.org/10.1007/s00466-014-1097-y es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1007/s00466-014-1097-y es_ES
dc.description.upvformatpinicio 251 es_ES
dc.description.upvformatpfin 266 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 55 es_ES
dc.description.issue 2 es_ES
dc.relation.senia 290105
dc.identifier.eissn 1432-0924
dc.contributor.funder European Commission
dc.contributor.funder Ministerio de Economía y Competitividad
dc.contributor.funder Universitat Politècnica de València
dc.contributor.funder Generalitat Valenciana
dc.description.references Ammar A, Mokdad B, Chinesta F, Keunings R (2006) A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids. J Non-Newton Fluid Mech 139:153–176 es_ES
dc.description.references Ammar A, Mokdad B, Chinesta F, Keunings R (2007) A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modelling of complex fluids. J Non-Newton Fluid Mech 144:98–121 es_ES
dc.description.references Chinesta F, Ladeveze P, Cueto E (2011) A short review on model order reduction based on proper generalized decomposition. Arch Comput Methods Eng 18:395–404 es_ES
dc.description.references Giner E, Bognet B, Ródenas JJ, Leygue A, Fuenmayor FJ, Chinesta F (2013) The proper generalized decomposition (PGD) as a numerical procedure to solve 3D cracked plates in linear elastic fracture mechanics. Int J Solids Struct 50:1710–1720 es_ES
dc.description.references Chinesta F, Ammar A, Leygue A, Keunings R (2011) An overview of the proper generalized decomposition with applications in computational rheology. J Non-Newton Fluid Mech 166(11):578–592 es_ES
dc.description.references Ammar A, Chinesta F, Diez P, Huerta A (2010) An error estimator for separated representations of highly multidimensional models. Comput Methods Appl Mech Eng 199(25–28):1872–1880 es_ES
dc.description.references Moitinho de Almeida JP (2013) A basis for bounding the errors of proper generalised decomposition solutions in solid mechanics. Int J Numer Methods Eng 94:961–984 es_ES
dc.description.references Ladevèze P, Chamoin L (2011) On the verification of model reduction methods based on the proper generalized decomposition. Comput Methods Appl Mech Eng 200:2032–2047 es_ES
dc.description.references Ladevèze P, Leguillon D (1983) Error estimate procedure in the finite element method and applications. SIAM J Numer Anal 20(3):485–509 es_ES
dc.description.references Babuška I, Rheinboldt WC (1978) A-posteriori error estimates for the finite element method. Int J Numer Methods Eng 12(10):1597–1615 es_ES
dc.description.references Ródenas JJ, Tur M, Fuenmayor FJ, Vercher A (2007) Improvement of the superconvergent patch recovery technique by the use of constraint equations: the SPR-C technique. Int J Numer Methods Eng 70(6):705–727 es_ES
dc.description.references Díez P, Parés N, Huerta A (2003) Recovering lower bounds of the error by postprocessing implicit residual a posteriori error estimates. Int J Numer Methods Eng 56(10):1465–1488 es_ES
dc.description.references Bognet B, Bordeu F, Chinesta F, Leygue A, Poitou A (2012) Advanced simulation of models defined in plate geometries: 3D solutions with 2D computational complexity. Comput Methods Appl Mech Eng 201–204:1–12 es_ES
dc.description.references Bognet B, Leygue A, Chinesta F (2014) Separated representations of 3D elastic solutions in shell geometries. Adv Model Simul Eng Sci 1(1):1–4 es_ES
dc.description.references Ghnatios C, Chinesta F, Binetruy C (2013) 3D modeling of squeeze flows occurring in composite laminates. Int J Mater Form 9(1):1–11 es_ES
dc.description.references Zienkiewicz OC, Zhu JZ (1987) A simple error estimator and adaptive procedure for practical engineering analysis. Int J Numer Methods Eng 24(2):337–357 es_ES
dc.description.references Chinesta F, Keunings R, Leygue A (2013) The proper generalized decomposition for advanced numerical simulations: a primer. Springer Publishing Company, New York Incorporated es_ES
dc.description.references Donea J, Huerta A (2002) Finite element methods for flow problems. Wiley, New York es_ES
dc.description.references Gonzalez D, Cueto E, Chinesta F, Diez P, Huerta A (2013) SUPG-based stabilization of proper generalized decompositions for high-dimensional advection-diffusion equations. Int J Numer Methods Eng 94(13):1216–1232 es_ES
dc.description.references Chinesta F, Ammar A, Cueto E (2010) Recent advances and new challenges in the use of the proper generalized decomposition for solving multidimensional models. Arch Comput Methods Eng 17(4):327–350 es_ES
dc.description.references Chinesta F, Leygue A, Bordeu F, Aguado JV, Cueto E, Gonzalez D, Alfaro I, Ammar A, Huerta A (2013) PGD-based computational vademecum for efficient design, optimization and control. Arch Comput Methods Eng 20:31–59 es_ES
dc.description.references Zienkiewicz OC, Zhu JZ (1992) The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique. Int J Numer Methods Eng 33(7):1331–1364 es_ES
dc.description.references Zienkiewicz OC, Zhu JZ (1992) The superconvergent patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity. Int J Numer Methods Eng 33(7):1365–1382 es_ES
dc.description.references Kvamsdal T, Okstad KM (1998) Error estimation based on superconvergent patch recovery using statically admissible stress fields. Int J Numer Methods Eng 42(3):443–472 es_ES
dc.description.references Wiberg NE, Abdulwahab F (1993) Patch recovery based on superconvergent derivatives and equilibrium. Int J Numer Methods Eng 36(16):2703–2724 es_ES
dc.description.references Wiberg NE, Abdulwahab F, Ziukas S (1994) Enhanced superconvergent patch recovery incorporating equilibrium and boundary conditions. Int J Numer Methods Eng 37(20):3417–3440 es_ES
dc.description.references Blacker T, Belytschko T (1994) Superconvergent patch recovery with equilibrium and conjoint interpolant enhancements. Int J Numer Methods Eng 37(3):517–536 es_ES
dc.description.references Ródenas JJ, González-Estrada OA, Tarancón JE, Fuenmayor FJ (2008) A recovery-type error estimator for the extended finite element method based on singular+smooth stress field splitting. Int J Numer Methods Eng 76(4):545–571 es_ES
dc.description.references Ródenas JJ, González-Estrada OA, Díez P, Fuenmayor FJ (2010) Accurate recovery-based upper error bounds for the extended finite element framework. Comput Methods Appl Mech Eng 199(37–40):2607–2621 es_ES
dc.description.references Nadal E, (2014) Cartesian grid FEM (cgFEM): high performance h-adaptive FE analysis with efficient error control. Application to structural shape optimization. PhD thesis, Universitat Politècnica de València es_ES
dc.description.references Karihaloo BL, Xiao QZ (2003) Modelling of stationary and growing cracks in FE framework without remeshing: a state-of-the-art review. Comput Struct 81(3):119–129 es_ES
dc.description.references González-Estrada OA, Ródenas JJ, Chinesta F, Fuenmayor FJ (2013) Enhanced error estimator based on a nearly equilibrated moving least squares recovery technique for FEM and XFEM. Comput Mech 52:321–344 es_ES
dc.description.references Fuenmayor FJ, Oliver JL (1996) Criteria to achieve nearly optimal meshes in the h-adaptive finite element mehod. Int J Numer Methods Eng 39(23):4039–4061 es_ES
dc.description.references Fuenmayor F, Restrepo J, Tarancón J, Baeza L (2001) Error estimation and h-adaptive refinement in the analysis of natural frequencies. Finite Elem Anal Des 38:137–153 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem