- -

Dynamic Ion Structure Factor of Warm Dense Matter

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Dynamic Ion Structure Factor of Warm Dense Matter

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Vorberger, J. es_ES
dc.contributor.author Donko, Z. es_ES
dc.contributor.author Tkachenko Gorski, Igor Mijail es_ES
dc.contributor.author Gericke, D. O. es_ES
dc.date.accessioned 2017-10-02T09:34:01Z
dc.date.available 2017-10-02T09:34:01Z
dc.date.issued 2012-11-28
dc.identifier.issn 0031-9007
dc.identifier.uri http://hdl.handle.net/10251/88400
dc.description.abstract [EN] The dynamics of the ion structure in warm dense matter is determined by molecular dynamics simulations using an effective ion-ion potential. This potential is obtained from ab initio simulations and has a strong short-range repulsion added to a screened Coulomb potential. Models based on static or dynamic local field corrections are found to be insufficient to describe the data. An extended Mermin approach, a hydrodynamic model, and the method of moments with local constraints are capable of reproducing the numerical results but have rather limited predictive powers as they all need some numerical data as input. The method of moments is found to be the most promising. es_ES
dc.description.sponsorship J. V. thanks the Technische Universitat Kaiserslautern (Germany) for its generous hospitality. I. M. T. is grateful to the UPV for the sabbatical leave he was granted. J. V. and D. O. G. acknowledge support from EPSRC (Grant No. EP/I014888/1) and Z. D. acknowledges support from OTKA, Grants No. K77653, No. IN85261, and No. K105476. I. M. T. was partially supported by the Spanish Ministerio de Ciencia e Innovacion under Grant No. ENE2010-21116-C02-02. en_EN
dc.language Inglés es_ES
dc.publisher American Physical Society es_ES
dc.relation.ispartof Physical Review Letters es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject PLASMAS es_ES
dc.subject SCATTERING es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Dynamic Ion Structure Factor of Warm Dense Matter es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1103/PhysRevLett.109.225001
dc.relation.projectID info:eu-repo/grantAgreement/OTKA//K105476/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/RCUK/EPSRC/EP/I014888/1/GB/ en_EN
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//ENE2010-21116-C02-02/ES/DINAMICA DE LA CARGA DE GRANOS, INESTABILIDES Y FENOMENOS COLECTIVOS EN LOS PLASMA GRANULARES DE LOS DISPOSITIVOS DE FUSION/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/OTKA//K77653/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/OTKA//IN85261/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Matemática Pura y Aplicada - Institut Universitari de Matemàtica Pura i Aplicada es_ES
dc.description.bibliographicCitation Vorberger, J.; Donko, Z.; Tkachenko Gorski, IM.; Gericke, DO. (2012). Dynamic Ion Structure Factor of Warm Dense Matter. Physical Review Letters. 109(22). https://doi.org/10.1103/PhysRevLett.109.225001 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1103/PhysRevLett.109.225001 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 109 es_ES
dc.description.issue 22 es_ES
dc.relation.senia 231578 es_ES
dc.identifier.pmid 23368129
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.contributor.funder Hungarian Scientific Research Fund es_ES
dc.contributor.funder Research Council, Reino Unido
dc.description.references Gericke, D. O., & Schlanges, M. (1999). Beam-plasma coupling effects on the stopping power of dense plasmas. Physical Review E, 60(1), 904-910. doi:10.1103/physreve.60.904 es_ES
dc.description.references Vorberger, J., Gericke, D. O., Bornath, T., & Schlanges, M. (2010). Energy relaxation in dense, strongly coupled two-temperature plasmas. Physical Review E, 81(4). doi:10.1103/physreve.81.046404 es_ES
dc.description.references Kritcher, A. L., Neumayer, P., Brown, C. R. D., Davis, P., Döppner, T., Falcone, R. W., … Glenzer, S. H. (2009). Measurements of Ionic Structure in Shock Compressed Lithium Hydride from Ultrafast X-Ray Thomson Scattering. Physical Review Letters, 103(24). doi:10.1103/physrevlett.103.245004 es_ES
dc.description.references Barbrel, B., Koenig, M., Benuzzi-Mounaix, A., Brambrink, E., Brown, C. R. D., Gericke, D. O., … Gregori, G. (2009). Measurement of Short-Range Correlations in Shock-Compressed Plastic by Short-Pulse X-Ray Scattering. Physical Review Letters, 102(16). doi:10.1103/physrevlett.102.165004 es_ES
dc.description.references Glenzer, S. H., & Redmer, R. (2009). X-ray Thomson scattering in high energy density plasmas. Reviews of Modern Physics, 81(4), 1625-1663. doi:10.1103/revmodphys.81.1625 es_ES
dc.description.references Gregori, G., & Gericke, D. O. (2009). Low frequency structural dynamics of warm dense matter. Physics of Plasmas, 16(5), 056306. doi:10.1063/1.3100203 es_ES
dc.description.references García Saiz, E., Gregori, G., Gericke, D. O., Vorberger, J., Barbrel, B., Clarke, R. J., … Riley, D. (2008). Probing warm dense lithium by inelastic X-ray scattering. Nature Physics, 4(12), 940-944. doi:10.1038/nphys1103 es_ES
dc.description.references Pelka, A., Gregori, G., Gericke, D. O., Vorberger, J., Glenzer, S. H., Günther, M. M., … Roth, M. (2010). Ultrafast Melting of Carbon Induced by Intense Proton Beams. Physical Review Letters, 105(26). doi:10.1103/physrevlett.105.265701 es_ES
dc.description.references Vorberger, J., Tamblyn, I., Militzer, B., & Bonev, S. A. (2007). Hydrogen-helium mixtures in the interiors of giant planets. Physical Review B, 75(2). doi:10.1103/physrevb.75.024206 es_ES
dc.description.references Holst, B., Redmer, R., & Desjarlais, M. P. (2008). Thermophysical properties of warm dense hydrogen using quantum molecular dynamics simulations. Physical Review B, 77(18). doi:10.1103/physrevb.77.184201 es_ES
dc.description.references Hansen, J. P., Pollock, E. L., & McDonald, I. R. (1974). Velocity Autocorrelation Function and Dynamical Structure Factor of the Classical One-Component Plasma. Physical Review Letters, 32(6), 277-280. doi:10.1103/physrevlett.32.277 es_ES
dc.description.references Nardin, F., Jacucci, G., & Dharma-wardana, M. W. C. (1988). Dynamic ion-ion structure factor of strongly coupled hydrogen plasmas at arbitrary degeneracies. Physical Review A, 37(3), 1025-1028. doi:10.1103/physreva.37.1025 es_ES
dc.description.references Donkó, Z., Kalman, G. J., & Golden, K. I. (2002). Caging of Particles in One-Component Plasmas. Physical Review Letters, 88(22). doi:10.1103/physrevlett.88.225001 es_ES
dc.description.references Kalman, G. J., Donkó, Z., Hartmann, P., & Golden, K. I. (2011). Strong Coupling Effects in Binary Yukawa Systems. Physical Review Letters, 107(17). doi:10.1103/physrevlett.107.175003 es_ES
dc.description.references Mithen, J. P., Daligault, J., & Gregori, G. (2011). Extent of validity of the hydrodynamic description of ions in dense plasmas. Physical Review E, 83(1). doi:10.1103/physreve.83.015401 es_ES
dc.description.references Wünsch, K., Vorberger, J., & Gericke, D. O. (2009). Ion structure in warm dense matter: Benchmarking solutions of hypernetted-chain equations by first-principle simulations. Physical Review E, 79(1). doi:10.1103/physreve.79.010201 es_ES
dc.description.references Ng, A., Celliers, P., Xu, G., & Forsman, A. (1995). Electron-ion equilibration in a strongly coupled plasma. Physical Review E, 52(4), 4299-4310. doi:10.1103/physreve.52.4299 es_ES
dc.description.references Mahan, G. D. (1990). Many-Particle Physics. doi:10.1007/978-1-4613-1469-1 es_ES
dc.description.references Iwamoto, N. (1984). Sum rules and static local-field corrections of electron liquids in two and three dimensions. Physical Review A, 30(6), 3289-3304. doi:10.1103/physreva.30.3289 es_ES
dc.description.references Hong, J., & Lee, M. H. (1985). Exact Dynamically Convergent Calculations of the Frequency-Dependent Density Response Function. Physical Review Letters, 55(22), 2375-2378. doi:10.1103/physrevlett.55.2375 es_ES
dc.description.references Hong, J., & Kim, C. (1991). Dynamic structure of strongly coupled one-component plasmas. Physical Review A, 43(4), 1965-1971. doi:10.1103/physreva.43.1965 es_ES
dc.description.references Fortmann, C., Wierling, A., & Röpke, G. (2010). Influence of local-field corrections on Thomson scattering in collision-dominated two-component plasmas. Physical Review E, 81(2). doi:10.1103/physreve.81.026405 es_ES
dc.description.references Reinholz, H., Redmer, R., Röpke, G., & Wierling, A. (2000). Long-wavelength limit of the dynamical local-field factor and dynamical conductivity of a two-component plasma. Physical Review E, 62(4), 5648-5666. doi:10.1103/physreve.62.5648 es_ES
dc.description.references Arkhipov, Y. V., Askaruly, A., Ballester, D., Davletov, A. E., Tkachenko, I. M., & Zwicknagel, G. (2010). Dynamic properties of one-component strongly coupled plasmas: The sum-rule approach. Physical Review E, 81(2). doi:10.1103/physreve.81.026402 es_ES
dc.description.references (2010). Contributions to Plasma Physics, 50(1). doi:10.1002/ctpp.v50:1 es_ES
dc.description.references Mithen, J. P., Daligault, J., & Gregori, G. (2012). Comparative merits of the memory function and dynamic local-field correction of the classical one-component plasma. Physical Review E, 85(5). doi:10.1103/physreve.85.056407 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem