- -

111 oriented gold nanoplatelets on multilayer graphene as visible light photocatalyst for overall water splitting

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

111 oriented gold nanoplatelets on multilayer graphene as visible light photocatalyst for overall water splitting

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Mateo Mateo, Diego es_ES
dc.contributor.author Esteve Adell, Iván es_ES
dc.contributor.author Albero Sancho, Josep es_ES
dc.contributor.author Sánchez Royo, Juan Francisco es_ES
dc.contributor.author Primo Arnau, Ana María es_ES
dc.contributor.author García Gómez, Hermenegildo es_ES
dc.date.accessioned 2017-10-02T10:07:03Z
dc.date.available 2017-10-02T10:07:03Z
dc.date.issued 2016-06-06
dc.identifier.issn 2041-1723
dc.identifier.uri http://hdl.handle.net/10251/88411
dc.description.abstract [EN] Development of renewable fuels from solar light appears as one of the main current challenges in energy science. A plethora of photocatalysts have been investigated to obtain hydrogen and oxygen from water and solar light in the last decades. However, the photon-to-hydrogen molecule conversion is still far from allowing real implementation of solar fuels. Here we show that 111 facet-oriented gold nanoplatelets on multilayer graphene films deposited on quartz is a highly active photocatalyst for simulated sunlight overall water splitting into hydrogen and oxygen in the absence of sacrificial electron donors, achieving hydrogen production rate of 1.2 molH2 per gcomposite per h. This photocatalytic activity arises from the gold preferential orientation and the strong gold–graphene interaction occurring in the composite system. es_ES
dc.description.sponsorship Financial support by the Spanish Ministry of Economy and Competitiveness (Severo Ochoa and CTQ2012-32315) and Generalitat Valenciana (Prometeo 2013-019) is gratefully acknowledged. D.M. and I.E.-A. thank to Spanish Ministry of Science for PhD scholarships. en_EN
dc.language Inglés es_ES
dc.publisher Nature Publishing Group es_ES
dc.relation.ispartof Nature Communications es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title 111 oriented gold nanoplatelets on multilayer graphene as visible light photocatalyst for overall water splitting es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1038/ncomms11819
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTQ2012-32315/ES/REDUCCION FOTOCATALITICA DEL DIOXIDO DE CARBONO/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2013%2F019/ES/HUMBACE: HUMAN-LIKE COMPUTATIONAL MODELS FOR AGENT-BASED COMPUTATIONAL ECONOMICS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Mateo Mateo, D.; Esteve Adell, I.; Albero Sancho, J.; Sánchez Royo, JF.; Primo Arnau, AM.; García Gómez, H. (2016). 111 oriented gold nanoplatelets on multilayer graphene as visible light photocatalyst for overall water splitting. Nature Communications. 2016(7):1-8. https://doi.org/10.1038/ncomms11819 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://dx.doi.org/10.1038/ncomms11819 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 8 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 2016 es_ES
dc.description.issue 7 es_ES
dc.relation.senia 313442 es_ES
dc.identifier.pmid 4897748
dc.identifier.pmcid PMC4897748
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Lv, X. J., Zhou, S., Huang, X., Wang, C. & Fu, W. F. Photocatalytic overall water splitting promoted by SnOx-NiGa2O4 photocatalysts. Appl. Cat. B: Environ. 182, 220–228 (2016). es_ES
dc.description.references Xu, J., Wang, L. & Cao, X. Polymer supported graphene-CdS composite catalyst with enhanced photocatalytic hydrogen production from water splitting under visible light. Chem. Eng. J. 283, 816–825 (2016). es_ES
dc.description.references Tanigawa, S. & Irie, H. Visible-light-sensitive two-step overall water-splitting based on band structure control of titanium dioxide. Appl. Cat. B: Environ. 180, 1–5 (2016). es_ES
dc.description.references Maeda, K. et al. GaN:ZnO solid solution as a photocatalyst for visible-light-driven overall water splitting. J. Am. Chem. Soc. 127, 8286–8287 (2005). es_ES
dc.description.references Maeda, K. et al. Photocatalyst releasing hydrogen from water. Nature 440, 295 (2006). es_ES
dc.description.references Kato, H. & Kudo, A. Visible-light-response and photocatalytic activities of TiO2 and SrTiO3 photocatalysts codoped with antimony and chromium. J. Phys. Chem. B 106, 5029–5034 (2002). es_ES
dc.description.references Xiang, Q., Cheng, B. & Yu, J. Graphene-based photocatalysts for solar-fuel generation. Angew. Chem. Int. Ed. 54, 11350–11366 (2015). es_ES
dc.description.references Navalon, S., Dhakshinamoorthy, A., Alvaro, M. & Garcia, H. Carbocatalysis by graphene-based materials. Chem. Rev. 114, 6179–6212 (2014). es_ES
dc.description.references Yu, J., Jin, J., Cheng, B. & Jaroniec, M. A noble metal-free reduced graphene oxide-cds nanorod composite for the enhanced visible-light photocatalytic reduction of CO2 to solar fuel. J. Mat. Chem. A 2, 3407–3416 (2014). es_ES
dc.description.references Meng, F., Cushing, S. K., Li, J., Hao, S. & Wu, N. Enhancement of solar hydrogen generation by synergistic interaction of La2Ti2O7 photocatalyst with plasmonic gold nanoparticles and reduced graphene oxide nanosheets. ACS Catal. 5, 1949–1955 (2015). es_ES
dc.description.references Shown, I. et al. Highly efficient visible light photocatalytic reduction of co2 to hydrocarbon fuels by cu-nanoparticle decorated graphene oxide. Nano Lett. 14, 6097–6103 (2014). es_ES
dc.description.references Shang, L. et al. Graphene-supported ultrafine metal nanoparticles encapsulated by mesoporous silica: robust catalysts for oxidation and reduction reactions. Angew. Chem. Int. Ed. 53, 250–254 (2014). es_ES
dc.description.references Latorre-Sánchez, M., Primo, A. & García, H. P-doped graphene obtained by pyrolysis of modified alginate as a photocatalyst for hydrogen generation from water-methanol mixtures. Angew. Chem. Int. Ed. 52, 11813–11816 (2013). es_ES
dc.description.references Lavorato, C., Primo, A., Molinari, R. & Garcia, H. N-doped graphene derived from biomass as a visible-light photocatalyst for hydrogen generation from water/methanol mixtures. Chem. - A Eur. J. 20, 187–194 (2014). es_ES
dc.description.references Shams, S. S., Zhang, L. S., Hu, R., Zhang, R. & Zhu, J. Synthesis of graphene from biomass: a green chemistry approach. Mater. Lett. 161, 476–479 (2015). es_ES
dc.description.references Meng, F. et al. Biomass-derived high-performance tungsten-based electrocatalysts on graphene for hydrogen evolution. J. Mater. Chem. A 3, 18572–18577 (2015). es_ES
dc.description.references Vilatela, J. J. & Eder, D. Nanocarbon composites and hybrids in sustainability: a review. ChemSusChem 5, 456–478 (2012). es_ES
dc.description.references Rani, P. & Jindal, V. K. Designing band gap of graphene by B and N dopant atoms. RSC Adv. 3, 802–812 (2013). es_ES
dc.description.references Zheng, Y. et al. Hydrogen evolution by a metal-free electrocatalyst. Nat. Commun. 5, 3783 (2014). es_ES
dc.description.references Wang, X. et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 8, 76–80 (2009). es_ES
dc.description.references Huang, H., Yang, S., Vajtai, R., Wang, X. & Ajayan, P. M. Pt-decorated 3D architectures built from graphene and graphitic carbon nitride nanosheets as efficient methanol oxidation catalysts. Adv. Mater. 26, 5160–5165 (2014). es_ES
dc.description.references Shiraishi, Y. et al. Platinum nanoparticles strongly associated with graphitic carbon nitride as efficient co-catalysts for photocatalytic hydrogen evolution under visible light. Chem. Commun. 50, 15255–15258 (2014). es_ES
dc.description.references G. Baldoví, H. et al. Visible-light photoresponse of gold nanoparticles supported on TiO2: A combined photocatalytic, photoelectrochemical, and transient spectroscopy study. ChemPhysChem 16, 335–341 (2015). es_ES
dc.description.references Serra, M., Albero, J. & Garcia, H. Photocatalytic Activity of Au/TiO2 photocatalysts for H-2 evolution: role of the Au nanoparticles as a function of the irradiation wavelength. ChemPhysChem 16, 1842–1845 (2015). es_ES
dc.description.references Gomes Silva, C., Juárez, R., Marino, T., Molinari, R. & García, H. Influence of excitation wavelength (UV or visible light) on the photocatalytic activity of titania containing gold nanoparticles for the generation of hydrogen or oxygen from water. J. Am. Chem. Soc. 133, 595–602 (2011). es_ES
dc.description.references El Kadib, A. Chitosan as a sustainable organocatalyst: a concise overview. ChemSusChem 8, 217–244 (2015). es_ES
dc.description.references Primo, A., Atienzar, P., Sanchez, E., Delgado, J. M. & García, H. From biomass wastes to large-area, high-quality, N-doped graphene: catalyst-free carbonization of chitosan coatings on arbitrary substrates. Chem. Commun. 48, 9254–9256 (2012). es_ES
dc.description.references Primo, A. & Quignard, F. Chitosan as efficient porous support for dispersion of highly active gold nanoparticles: design of hybrid catalyst for carbon-carbon bond formation. Chem. Commun. 46, 5593–5595 (2010). es_ES
dc.description.references Primo, A. et al. One-step pyrolysis preparation of 1.1.1 oriented gold nanoplatelets supported on graphene and six orders of magnitude enhancement of the resulting catalytic activity. Angew. Chem. Int. Ed. 54, 1–7 (2015). es_ES
dc.description.references Lalov, I. G., Guerginov, I. I., Krysteva, M. A. & Fartsov, K. Treatment of waste water from distilleries with chitosan. Water Res. 34, 1503–1506 (2000). es_ES
dc.description.references No, H. K. & Meyers, S. P. Application of Chitosan for Treatment of Wastewaters in Reviews of Environmental Contamination and Toxicology: Continuation of Residue Reviews eds George W. W. 1–27Springer (2000). es_ES
dc.description.references Liu, C. et al. Hydrothermal synthesis of N-doped TiO2 nanowires and N-doped graphene heterostructures with enhanced photocatalytic properties. J. Alloys Compd. 656, 24–32 (2016). es_ES
dc.description.references Radnik, J., Mohr, C. & Claus, P. On the origin of binding energy shifts of core levels of supported gold nanoparticles and dependence of pretreatment and materials synthesis. Phys. Chem. Chem. Phys. 5, 172–177 (2003). es_ES
dc.description.references Primo, A. et al. High catalytic activity of oriented 2.0.0 copper(I) oxide grown on graphene film. Nat. Commun. 6, 8561 (2015). es_ES
dc.description.references Abbasi, M. et al. Application of transmitted Kikuchi diffraction in studying nano-oxide and ultrafine metallic grains. ACS Nano 9, 10991–11002 (2015). es_ES
dc.description.references Trimby, P. T. Orientation mapping of nanostructured materials using transmission kikuchi diffraction in the scanning electron microscope. Ultramicroscopy 120, 16–24 (2012). es_ES
dc.description.references Johnson, C. J., Dujardin, E., Davis, S. A., Murphy, C. J. & Mann, S. Growth and form of gold nanorods prepared by seed-mediated, surfactant-directed synthesis. J. Mater. Chem. 12, 1765–1770 (2002). es_ES
dc.description.references Ikeda, S. et al. Mechano-catalysis—a novel method for overall water splitting. Phys. Chem. Chem. Phys. 1, 4485–4491 (1999). es_ES
dc.description.references Khalid, N. R., Ahmed, E., Hong, Z., Sana, L. & Ahmed, M. Enhanced photocatalytic activity of graphene-TiO2 composite under visible light irradiation. Curr. Appl. Phys. 13, 659–663 (2013). es_ES
dc.description.references Singh, G. P., Shrestha, K. M., Nepal, A., Klabunde, K. J. & Sorensen, C. M. Graphene supported plasmonic photocatalyst for hydrogen evolution in photocatalytic water splitting. Nanotechnology 25, 265701 (2014). es_ES
dc.description.references Wang, M., Han, J., Xiong, H. & Guo, R. Yolk@shell nanoarchitecture of Au@r-GO/TiO2 hybrids as powerful visible light photocatalysts. Langmuir 31, 6220–6228 (2015). es_ES
dc.description.references Luo, Z. et al. Modulating the electronic structures of graphene by controllable hydrogenation. Appl. Phys. Lett. 97, 233111 (2010). es_ES
dc.description.references Sridhara Rao, D. V., Muraleedharan, K. & Humphreys, C. J. in Microscope Science, Technology, Applications and Education 3, 1232–1244Formatec (2010). es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem