- -

From MOFs to zeolites: zirconium for epoxide rearrangement

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

From MOFs to zeolites: zirconium for epoxide rearrangement

Show full item record

Corma Canós, A.; Orozco Arboleda, LM.; Renz, M. (2013). From MOFs to zeolites: zirconium for epoxide rearrangement. New Journal of Chemistry. 37(11):3496-3502. https://doi.org/10.1039/c3nj00551h

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/88499

Files in this item

Item Metadata

Title: From MOFs to zeolites: zirconium for epoxide rearrangement
Author: Corma Canós, Avelino Orozco Arboleda, Lina Marcela Renz, Michael
UPV Unit: Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Universitat Politècnica de València. Departamento de Química - Departament de Química
Issued date:
Abstract:
[EN] Zirconium Lewis acid sites grafted onto a mesoporous silicate (MCM-41) and zirconium sites incorporated into inorganic-organic MOF materials are employed successfully in the rearrangement of beta-pinene epoxide into ...[+]
Subjects: MEERWEIN-PONNDORF-VERLEY , BAEYER-VILLIGER OXIDATIONS , METAL-ORGANIC FRAMEWORKS , LEWIS-ACID CATALYSTS , BETA ZEOLITE , SN-BETA , HETEROGENEOUS CATALYSTS , SELECTIVE CATALYST , CARBONYL-COMPOUNDS , WATER
Copyrigths: Cerrado
Source:
New Journal of Chemistry. (issn: 1144-0546 ) (eissn: 1369-9261 )
DOI: 10.1039/c3nj00551h
Publisher:
Royal Society of Chemistry
Publisher version: http://doi.org/10.1039/c3nj00551h
Project ID:
info:eu-repo/grantAgreement/MICINN//CTQ2011-27550/ES/TRANSFORMACION CATALITICA DE BIOMASA EN DIESEL Y EN PRODUCTOS QUIMICOS/
info:eu-repo/grantAgreement/COLCIENCIAS//512%2F2010/
Thanks:
We thank MINECO (Consolider Ingenio 2010-MULTICAT and CTQ2011-27550) for funding. L.M.O. is grateful to the COLCIENCIAS institute for a Francisco-Jose-de-Caldas (512/2010) doctoral fellowship.
Type: Artículo

References

Thomas, J. M. (2012). The societal significance of catalysis and the growing practical importance of single-site heterogeneous catalysts. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 468(2143), 1884-1903. doi:10.1098/rspa.2012.0196

Thomas, J. M., & Raja, R. (2010). Mono-, Bi- and Multifunctional Single-Sites: Exploring the Interface Between Heterogeneous and Homogeneous Catalysis. Topics in Catalysis, 53(13-14), 848-858. doi:10.1007/s11244-010-9517-5

Shylesh, S., Jia, M., & Thiel, W. R. (2010). Recent Progress in the Heterogenization of Complexes for Single-Site Epoxidation Catalysis. European Journal of Inorganic Chemistry, 2010(28), 4395-4410. doi:10.1002/ejic.201000582 [+]
Thomas, J. M. (2012). The societal significance of catalysis and the growing practical importance of single-site heterogeneous catalysts. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 468(2143), 1884-1903. doi:10.1098/rspa.2012.0196

Thomas, J. M., & Raja, R. (2010). Mono-, Bi- and Multifunctional Single-Sites: Exploring the Interface Between Heterogeneous and Homogeneous Catalysis. Topics in Catalysis, 53(13-14), 848-858. doi:10.1007/s11244-010-9517-5

Shylesh, S., Jia, M., & Thiel, W. R. (2010). Recent Progress in the Heterogenization of Complexes for Single-Site Epoxidation Catalysis. European Journal of Inorganic Chemistry, 2010(28), 4395-4410. doi:10.1002/ejic.201000582

Zhu, Y., Chuah, G., & Jaenicke, S. (2003). Al-free Zr-zeolite beta as a regioselective catalyst in the Meerwein–Ponndorf–Verley reaction. Chem. Commun., (21), 2734-2735. doi:10.1039/b309191k

Corma, A., & Renz, M. (2007). A General Method for the Preparation of Ethers Using Water-Resistant Solid Lewis Acids. Angewandte Chemie International Edition, 46(1-2), 298-300. doi:10.1002/anie.200604018

Corma, A., Nemeth, L. T., Renz, M., & Valencia, S. (2001). Sn-zeolite beta as a heterogeneous chemoselective catalyst for Baeyer–Villiger oxidations. Nature, 412(6845), 423-425. doi:10.1038/35086546

Moliner, M., Roman-Leshkov, Y., & Davis, M. E. (2010). Tin-containing zeolites are highly active catalysts for the isomerization of glucose in water. Proceedings of the National Academy of Sciences, 107(14), 6164-6168. doi:10.1073/pnas.1002358107

Corma, A., & García, H. (2002). Lewis Acids as Catalysts in Oxidation Reactions:  From Homogeneous to Heterogeneous Systems. Chemical Reviews, 102(10), 3837-3892. doi:10.1021/cr010333u

Corma, A., Domine, M. E., Nemeth, L., & Valencia, S. (2002). Al-Free Sn-Beta Zeolite as a Catalyst for the Selective Reduction of Carbonyl Compounds (Meerwein−Ponndorf−Verley Reaction). Journal of the American Chemical Society, 124(13), 3194-3195. doi:10.1021/ja012297m

Corma, A. (2003). Water-resistant solid Lewis acid catalysts: Meerwein–Ponndorf–Verley and Oppenauer reactions catalyzed by tin-beta zeolite. Journal of Catalysis, 215(2), 294-304. doi:10.1016/s0021-9517(03)00014-9

Boronat, M., Corma, A., & Renz, M. (2006). Mechanism of the Meerwein−Ponndorf−Verley−Oppenauer (MPVO) Redox Equilibrium on Sn− and Zr−Beta Zeolite Catalysts. The Journal of Physical Chemistry B, 110(42), 21168-21174. doi:10.1021/jp063249x

Renz, M., Blasco, T., Corma, A., Fornés, V., Jensen, R., & Nemeth, L. (2002). Selective and Shape-Selective Baeyer–Villiger Oxidations of Aromatic Aldehydes and Cyclic Ketones with Sn-Beta Zeolites and H2O2. Chemistry - A European Journal, 8(20), 4708-4717. doi:10.1002/1521-3765(20021018)8:20<4708::aid-chem4708>3.0.co;2-u

Boronat, M., Corma, A., Renz, M., Sastre, G., & Viruela, P. M. (2005). A Multisite Molecular Mechanism for Baeyer-Villiger Oxidations on Solid Catalysts Using Environmentally Friendly H2O2 as Oxidant. Chemistry - A European Journal, 11(23), 6905-6915. doi:10.1002/chem.200500184

Román-Leshkov, Y., Moliner, M., Labinger, J. A., & Davis, M. E. (2010). Mechanism of Glucose Isomerization Using a Solid Lewis Acid Catalyst in Water. Angewandte Chemie International Edition, 49(47), 8954-8957. doi:10.1002/anie.201004689

Nikolla, E., Román-Leshkov, Y., Moliner, M., & Davis, M. E. (2011). «One-Pot» Synthesis of 5-(Hydroxymethyl)furfural from Carbohydrates using Tin-Beta Zeolite. ACS Catalysis, 1(4), 408-410. doi:10.1021/cs2000544

Camblor, M. A., Corma, A., Martínez, A., & Pérez-Pariente, J. (1992). Synthesis of a titaniumsilicoaluminate isomorphous to zeolite beta and its application as a catalyst for the selective oxidation of large organic molecules. J. Chem. Soc., Chem. Commun., 0(8), 589-590. doi:10.1039/c39920000589

Blasco, T., Camblor, M. A., Corma, A., Esteve, P., Guil, J. M., Martínez, A., … Valencia, S. (1998). Direct Synthesis and Characterization of Hydrophobic Aluminum-Free Ti−Beta Zeolite. The Journal of Physical Chemistry B, 102(1), 75-88. doi:10.1021/jp973288w

Sasidharan, M., Wu, P., & Tatsumi, T. (2002). Epoxidation of α,β-Unsaturated Carbonyl Compounds over Various Titanosilicates. Journal of Catalysis, 205(2), 332-338. doi:10.1006/jcat.2001.3440

Blasco, T., Corma, A., Navarro, M. T., & Pariente, J. P. (1995). Synthesis, Characterization, and Catalytic Activity of Ti-MCM-41 Structures. Journal of Catalysis, 156(1), 65-74. doi:10.1006/jcat.1995.1232

Maschmeyer, T., Rey, F., Sankar, G., & Thomas, J. M. (1995). Heterogeneous catalysts obtained by grafting metallocene complexes onto mesoporous silica. Nature, 378(6553), 159-162. doi:10.1038/378159a0

Corma, A., Navarro, M. T., Nemeth, L., & Renz, M. (2001). Sn-MCM-41—a heterogeneous selective catalyst for the Baeyer–Villiger oxidation with hydrogen peroxideElectronic supplementary information (ESI) available: XRD pattern of as-prepared Sn-MCM-41. See http://www.rsc.org/suppdata/cc/b1/b105927k/. Chemical Communications, (21), 2190-2191. doi:10.1039/b105927k

Liu, S. H., Jaenicke, S., & Chuah, G. K. (2002). Hydrous Zirconia as a Selective Catalyst for the Meerwein–Ponndorf–Verley Reduction of Cinnamaldehyde. Journal of Catalysis, 206(2), 321-330. doi:10.1006/jcat.2001.3480

De la Torre, O., Renz, M., & Corma, A. (2010). Biomass to chemicals: Rearrangement of β-pinene epoxide into myrtanal with well-defined single-site substituted molecular sieves as reusable solid Lewis-acid catalysts. Applied Catalysis A: General, 380(1-2), 165-171. doi:10.1016/j.apcata.2010.03.056

Corma, A., García, H., & Llabrés i Xamena, F. X. (2010). Engineering Metal Organic Frameworks for Heterogeneous Catalysis. Chemical Reviews, 110(8), 4606-4655. doi:10.1021/cr9003924

Park, K. S., Ni, Z., Cote, A. P., Choi, J. Y., Huang, R., Uribe-Romo, F. J., … Yaghi, O. M. (2006). Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proceedings of the National Academy of Sciences, 103(27), 10186-10191. doi:10.1073/pnas.0602439103

Cavka, J. H., Jakobsen, S., Olsbye, U., Guillou, N., Lamberti, C., Bordiga, S., & Lillerud, K. P. (2008). A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stability. Journal of the American Chemical Society, 130(42), 13850-13851. doi:10.1021/ja8057953

Vermoortele, F., Ameloot, R., Vimont, A., Serre, C., & De Vos, D. (2011). An amino-modified Zr-terephthalate metal–organic framework as an acid–base catalyst for cross-aldol condensation. Chem. Commun., 47(5), 1521-1523. doi:10.1039/c0cc03038d

Vermoortele, F., Vandichel, M., Van de Voorde, B., Ameloot, R., Waroquier, M., Van Speybroeck, V., & De Vos, D. E. (2012). Electronic Effects of Linker Substitution on Lewis Acid Catalysis with Metal-Organic Frameworks. Angewandte Chemie International Edition, 51(20), 4887-4890. doi:10.1002/anie.201108565

Corma, A., Renz, M., & Susarte, M. (2009). Transformation of Biomass Products into Fine Chemicals Catalyzed by Solid Lewis- and Brønsted-acids. Topics in Catalysis, 52(9), 1182-1189. doi:10.1007/s11244-009-9266-5

Puchberger, M., Kogler, F. R., Jupa, M., Gross, S., Fric, H., Kickelbick, G., & Schubert, U. (2006). Can the Clusters Zr6O4(OH)4(OOCR)12 and [Zr6O4(OH)4(OOCR)12]2 Be Converted into Each Other? European Journal of Inorganic Chemistry, 2006(16), 3283-3293. doi:10.1002/ejic.200600348

Kogler, F. R., Jupa, M., Puchberger, M., & Schubert, U. (2004). Control of the ratio of functional and non-functional ligands in clusters of the type Zr6O4(OH)4(carboxylate)12for their use as building blocks for inorganic–organic hybrid polymers. J. Mater. Chem., 14(21), 3133-3138. doi:10.1039/b405769d

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record