- -

Prediction of the level of astringency in persimmon using visible and near-infrared spectroscopy

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Prediction of the level of astringency in persimmon using visible and near-infrared spectroscopy

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Cortes-Lopez, Victoria es_ES
dc.contributor.author Rodríguez Ortega, Alejandro es_ES
dc.contributor.author Blasco Ivars, José es_ES
dc.contributor.author Rey Solaz, Beatriz es_ES
dc.contributor.author Besada, Cristina es_ES
dc.contributor.author Cubero García, Sergio es_ES
dc.contributor.author Salvador, Alejandra es_ES
dc.contributor.author Talens Oliag, Pau es_ES
dc.contributor.author Aleixos Borrás, María Nuria es_ES
dc.date.accessioned 2017-10-20T07:09:55Z
dc.date.available 2017-10-20T07:09:55Z
dc.date.issued 2017 es_ES
dc.identifier.issn 0260-8774 es_ES
dc.identifier.uri http://hdl.handle.net/10251/89660
dc.description.abstract [EN] Early control of fruit quality requires reliable and rapid determination techniques. Therefore, the food industry has a growing interest in non-destructive methods such as spectroscopy. The aim of this study was to evaluate the feasibility of visible and near-infrared (NIR) spectroscopy, in combination with multivariate analysis techniques, to predict the level and changes of astringency in intact and in the flesh of half cut persimmon fruits. The fruits were harvested and exposed to different treatments with 95 % CO2 at 20 ºC for 0, 6, 12, 18 and 24 h to obtain samples with different levels of astringency. A set of 98 fruits was used to develop the predictive models based on their spectral data and another external set of 42 fruit samples was used to validate the models. The models were created using the partial least squares regression (PLSR), support vector machine (SVM) and least squares support vector machine (LS-SVM). In general, the models with the best performance were those which included standard normal variate (SNV) in the pre-processing. The best model was the PLSR developed with SNV along with the first derivative (1-Der) pre-processing, created using the data obtained at six measurement points of the intact fruits and all wavelengths (R2=0.904 and RPD=3.26). Later, a successive projection algorithm (SPA) was applied to select the most effective wavelengths (EWs). Using the six points of measurement of the intact fruit and SNV together with the direct orthogonal signal correction (DOSC) pre-processing in the NIR spectra, 41 EWs were selected, achieving an R2 of 0.915 and an RPD of 3.46 for the PLSR model. These results suggest that this technology has potential for use as a feasible and cost-effective method for the non-destructive determination of astringency in persimmon fruits. es_ES
dc.description.sponsorship This work has been partially funded by the Institute Nacional de Investigacion y Tecnologia Agraria y Alimentaria de Espana (INIA) through research projects RTA2012-00062-004-01/03, RTA2013-00043-C02, and RTA2015-00078-00-00 with the support of European FEDER funds, and by the Conselleria d' Educacio, Investigacio, Cultura i Esport, Generalitat Valenciana, through the project AICO/2015/122. V. Cortes thanks the Spanish MEC for the FPU grant (FPU13/04202). en_EN
dc.language Inglés es_ES
dc.relation.ispartof JOURNAL OF FOOD ENGINEERING es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Diospyros kaki es_ES
dc.subject Fruit internal quality es_ES
dc.subject Soluble tannins es_ES
dc.subject Near-infrared spectroscopy es_ES
dc.subject Chemometrics es_ES
dc.subject.classification EXPRESION GRAFICA EN LA INGENIERIA es_ES
dc.subject.classification TECNOLOGIA DE ALIMENTOS es_ES
dc.title Prediction of the level of astringency in persimmon using visible and near-infrared spectroscopy es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.jfoodeng.2017.02.017 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//RTA2012-00062-C04-01/ES/Nuevas técnicas de inspección basadas en espectrometría para la estimación de propiedades y determinación automática de la calidad interna y sanidad de productos agroalimentarios aplicadas a líneas de inspección y manipulación (SPEC-DACSA)/
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//RTA2013-00043-C02-02/ES/Caracterización morfológica, agronómica y molecular de nuevo material vegetal de caqui/
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//RTA2015-00078-00-00/ES/Sistemas no destructivos para la determinación automática de la calidad interna de frutas en línea utilizando métodos ópticos e información espectra/
dc.relation.projectID info:eu-repo/grantAgreement/Generalitat Valenciana//AICO%2F2015%2F122/ES/
dc.relation.projectID info:eu-repo/grantAgreement/MECD//FPU13%2F04202/ES/FPU13%2F04202/
dc.rights.accessRights Abierto es_ES
dc.date.embargoEndDate 2018-07-31 es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Mecanización y Tecnología Agraria - Departament de Mecanització i Tecnologia Agrària es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Gráfica - Departament d'Enginyeria Gràfica es_ES
dc.description.bibliographicCitation Cortés López, V.; Rodríguez Ortega, A.; Blasco Ivars, J.; Rey Solaz, B.; Besada, C.; Cubero García, S.; Salvador, A.... (2017). Prediction of the level of astringency in persimmon using visible and near-infrared spectroscopy. JOURNAL OF FOOD ENGINEERING. 204:27-37. doi:10.1016/j.jfoodeng.2017.02.017 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1016/j.jfoodeng.2017.02.017 es_ES
dc.description.upvformatpinicio 27 es_ES
dc.description.upvformatpfin 37 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 204 es_ES
dc.relation.pasarela S\329804 es_ES
dc.contributor.funder Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria
dc.contributor.funder Ministerio de Educación y Ciencia


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem