Mostrar el registro sencillo del ítem
dc.contributor.author | Morales Mojica, Jair Andrés | es_ES |
dc.contributor.author | Cristancho Santos, Maira Alejandra | es_ES |
dc.contributor.author | Baquero Rodríguez, Gustavo Andrés | es_ES |
dc.date.accessioned | 2017-10-25T06:39:39Z | |
dc.date.available | 2017-10-25T06:39:39Z | |
dc.date.issued | 2017-07-27 | |
dc.identifier.issn | 1134-2196 | |
dc.identifier.uri | http://hdl.handle.net/10251/89972 | |
dc.description.abstract | [EN] The green roofs appear as technology for the improvement water quality. This article identifies trends in the conditions of design, construction and operation of green roofs, which aim is to improve the quality of rainwater. A literature review was carried out in order to collect 45 original research papers from databases as Scopus, Science Direct, and Redalyc. From the information collected trends in increments and reductions in the concentrations of the main water quality parameters, seasons of the year with the best results, types of green roofs , types of substrate and most common components, construction trends (dimensions, inclination, Materials and layers) and vegetation used in these systems have been determined. The results show that green roofs have the ability to neutralize acid rain. Extensive type roofs are the ones most commonly used, due to its characteristics of construction, functionality and low maintenance requirements | es_ES |
dc.description.abstract | [ES] Los techos verdes se presentan como tecnología de mejoramiento de calidad de agua. En este artículo se identifican tendencias en las condiciones de diseño, construcción y operación de techos verdes cuyo objetivo es mejorar la calidad del agua lluvia. Se realizó una revisión bibliográfica consultando en las bases de datos Scopus, Science Direct y Redalyc, un total de 45 artículos científicos originales. A partir de la información recolectada se identificaron tendenciasen incrementos y reducciones en las concentraciones de diferentes parámetrosde calidad de agua, temporadas del año con los mejores resultados, tipos de techos verdesmás usados, clases de sustratoy componentes más comunes, tendencias de construcción (dimensiones, inclinación, materiales y capas) y vegetación más usada. Los resultados muestran que los techos verdes tienen la capacidad de neutralizar la lluvia ácida. Debido a sus características de construcción, funcionalidad y bajo costo, los techos de tipo extensivo son los más usados. | es_ES |
dc.language | Español | es_ES |
dc.publisher | Universitat Politècnica de València | |
dc.relation.ispartof | Ingeniería del Agua | |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Techo verde | es_ES |
dc.subject | Tendencia | es_ES |
dc.subject | Escorrentía | es_ES |
dc.subject | Calidad del agua | es_ES |
dc.subject | Sustrato | es_ES |
dc.subject | Green roofs | es_ES |
dc.subject | Trends | es_ES |
dc.subject | Rainwater | es_ES |
dc.subject | Water quality | es_ES |
dc.subject | Substrate | es_ES |
dc.title | Tendencias en el diseño, construcción y operación de techos verdes para el mejoramiento de la calidad del agua lluvia. Estado del arte | es_ES |
dc.title.alternative | Trends in the design, construction and operation of green roofs to improve the rainwater quality. State of the art | es_ES |
dc.type | Artículo | es_ES |
dc.date.updated | 2017-10-25T06:25:37Z | |
dc.identifier.doi | 10.4995/ia.2017.6939 | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Morales Mojica, JA.; Cristancho Santos, MA.; Baquero Rodríguez, GA. (2017). Tendencias en el diseño, construcción y operación de techos verdes para el mejoramiento de la calidad del agua lluvia. Estado del arte. Ingeniería del Agua. 21(3):179-196. https://doi.org/10.4995/ia.2017.6939 | es_ES |
dc.description.accrualMethod | SWORD | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/ia.2017.6939 | es_ES |
dc.description.upvformatpinicio | 179 | es_ES |
dc.description.upvformatpfin | 196 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 21 | |
dc.description.issue | 3 | |
dc.identifier.eissn | 1886-4996 | |
dc.description.references | Aceves, M. C., Fuamba, M. 2016. Methodology for Selecting Best Management Practices Integrating Multiple Stakeholders and Criteria. Part 2: Case Study. Water, 8(2), 56. https://doi.org/10.3390/w8020056 | es_ES |
dc.description.references | Aitkenhead-Peterson, J. A., Dvorak, B. D., Volder, A., Stanley, N. C. 2010. Chemistry of growth medium and leachate from green roof systems in south-central Texas. Urban Ecosystems, 14(1), 17-33. https://doi.org/10.1007/s11252-010-0137-4 | es_ES |
dc.description.references | Alsup, S. E., Ebbs, S. D., Battaglia, L. L., Retzlaff, W. A. 2011. Heavy metals in leachate from simulated green roof systems. Ecological Engineering, 37(11), 1709-1717. https://doi.org/10.1016/j.ecoleng.2011.06.045 | es_ES |
dc.description.references | Ballester, F., Castro, D., Gil, M. 2000. Definición, función y clasificación de los geotextiles. Recuperado 6 de noviembre de 2016, a partir de http://www.giteco.unican.es/pdf/publicaciones/AYC30-X-2000.pdf | es_ES |
dc.description.references | Beck, D. A., Johnson, G. R., Spolek, G. A. 2011. Amending greenroof soil with biochar to affect runoff water quantity and quality. Environmental Pollution, 159(8-9), 2111-2118. https://doi.org/10.1016/j.envpol.2011.01.022 | es_ES |
dc.description.references | Beecham, S., Razzaghmanesh, M. 2015. Water quality and quantity investigation of green roofs in a dry climate. Water Research, 70, 370-384. https://doi.org/10.1016/j.watres.2014.12.015 | es_ES |
dc.description.references | Bengtsson, L., Grahn, L., Olsson, J. 2005. Hydrological function of a thin extensive green roof in southern Sweden. Hydrology Research An international Journal, 36, 259-268. | es_ES |
dc.description.references | Berghage, R. D., Beattie, D., Jarrett, A., Thuring, C., Razaeri, F. 2009. Green Roofs for Stormwater Runoff Control. Cincinnati. Recuperado a partir de https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=P1003704.txt | es_ES |
dc.description.references | Berndtsson, J. C., Emilsson, T., Bengtsson, L. 2006. The influence of extensive vegetated roofs on runoff water quality. Science of The Total Environment, 355(1-3), 48-63. https://doi.org/10.1016/j.scitotenv.2005.02.035 | es_ES |
dc.description.references | Bliss, D. J., Neufeld, R. D., Ries, R. J. 2008. Storm Water Runoff Mitigation Using a Green Roof. Environmental Engineering Science, 26(2), 407-418. https://doi.org/10.1089/ees.2007.0186 | es_ES |
dc.description.references | Buccola, N., Spolek, G. 2010. A Pilot-Scale Evaluation of Greenroof Runoff Retention, Detention, and Quality. Water, Air, Soil Pollution, 216(1-4), 83-92. https://doi.org/10.1007/s11270-010-0516-8 | es_ES |
dc.description.references | Buffam, I., Mitchell, M. E., Durtsche, R. D. 2016. Environmental drivers of seasonal variation in green roof runoff water quality. Ecological Engineering, 91, 506-514. https://doi.org/10.1016/j.ecoleng.2016.02.044 | es_ES |
dc.description.references | Carpenter, C. M. G., Todorov, D., Driscoll, C. T., Montesdeoca, M. 2016. Water quantity and quality response of a green roof to storm events: Experimental and monitoring observations. Environmental Pollution, 218, 664-672. https://doi.org/10.1016/j.envpol.2016.07.056 | es_ES |
dc.description.references | Chen, C. F., Kang, S. F. 2016. Effects of substrates and plant species on water quality of extensive green roofs. Applied ecology and environmental research, 14, 77-91. https://doi.org/10.15666/aeer/1402_077091 | es_ES |
dc.description.references | Czemiel Berndtsson, J. 2010. Green roof performance towards management of runoff water quantity and quality: A review. Ecological Engineering, 36, 351-360. https://doi.org/10.1016/j.ecoleng.2009.12.014 | es_ES |
dc.description.references | Ewecharoen, A., Thiravetyan, P., Nakbanpote, W. 2008. Comparison of nickel adsorption from electroplating rinse water by coir pith and modified coir pith. Chemical Engineering Journal, 137(2), 181-188. https://doi.org/10.1016/j.cej.2007.04.007 | es_ES |
dc.description.references | Getter, K. L., Rowe, D. B. 2006. The Role of Extensive Green Roofs in Sustainable Development. HortScience, 41(5), 1276-1285. | es_ES |
dc.description.references | Ghassabzadeh, H., Mohadespour, A., Torab-Mostaedi, M., Zaheri, P., Maragheh, M. G., Taheri, H. 2010. Adsorption of Ag, Cu and Hg from aqueous solutions using expanded perlite. Journal of Hazardous Materials, 177(1-3), 950-955. https://doi.org/10.1016/j.jhazmat.2010.01.010 | es_ES |
dc.description.references | Goverment of the District of Columbia (Trad.). 2006. Fachadas y azoteas verdes. Recuperado a partir de http://anacostiaws.org/green-roofs | es_ES |
dc.description.references | Gregoire, B. G., Clausen, J. C. 2011. Effect of a modular extensive green roof on stormwater runoff and water quality. Ecological Engineering, 37, 963-969. https://doi.org/10.1016/j.ecoleng.2011.02.004 | es_ES |
dc.description.references | Gromaire, M. C., Ramier, D., Seidl, M., Berthier, E., Saad, M., De Gouvello, B. 2013. Impact of extensive green roofs on the quantity and the quality of runoff - first results of a test bench in the Paris region. Recuperado a partir de http://hdl.handle.net/2042/51380 | es_ES |
dc.description.references | Harper, G. E., Limmer, M. A., Showalter, W. E., Burken, J. G. 2015. Nine-month evaluation of runoff quality and quantity from an experiential green roof in Missouri, USA. Ecological Engineering, 78, 127-133. https://doi.org/10.1016/j.ecoleng.2014.06.004 | es_ES |
dc.description.references | Hashemi, S. S. G., Mahmud, H. B., Ashraf, M. A. 2015. Performance of green roofs with respect to water quality and reduction of energy consumption in tropics: A review. Renewable and Sustainable Energy Reviews, 52, 669-679. https://doi.org/10.1016/j.rser.2015.07.163 | es_ES |
dc.description.references | Hathaway, A. M., Hunt, W. F., Jennings, G. D. 2008. A field study of green roof hydrologic and water quality performance. American Society of Agricultural and Biological Engineers, 51, 37-44. | es_ES |
dc.description.references | Kok, K. H., Sidek, L. M., Chow, M. F., Abidin, M. R. Z., Basri, H., Hayder, G. 2016. Evaluation of green roof performances for urban stormwater quantity and quality controls. International Journal of River Basin Management, 14(1), 1-7. https://doi.org/10.1080/15715124.2015.1048456 | es_ES |
dc.description.references | Kuoppamäki, K., Hagner, M., Lehvävirta, S., Setälä, H. (2016a). Biochar amendment in the green roof substrate affects runoff quality and quantity. Ecological Engineering, 88, 1-9. https://doi.org/10.1016/j.ecoleng.2015.12.010 | es_ES |
dc.description.references | Kuoppamäki, K., Hagner, M., Lehvävirta, S., Setälä, H. (2016b). Biochar amendment in the green roof substrate affects runoff quality and quantity. Ecological Engineering, 88, 1-9. https://doi.org/10.1016/j.ecoleng.2015.12.010 | es_ES |
dc.description.references | Kuoppamäki, K., Lehvävirta, S. 2016. Mitigating nutrient leaching from green roofs with biochar. Landscape and Urban Planning, 152, 39-48. https://doi.org/10.1016/j.landurbplan.2016.04.006 | es_ES |
dc.description.references | Malamis, S., Katsou, E. 2013. A review on zinc and nickel adsorption on natural and modified zeolite, bentonite and vermiculite: Examination of process parameters, kinetics and isotherms. Journal of Hazardous Materials, 252-253, 428-461. https://doi.org/10.1016/j.jhazmat.2013.03.024 | es_ES |
dc.description.references | Malcolm, E. G., Reese, M. L., Schaus, M. H., Ozmon, I. M., Tran, L. M. 2014. Measurements of nutrients and mercury in green roof and gravel roof runoff. Ecological Engineering, 73, 705-712. https://doi.org/10.1016/j.ecoleng.2014.09.030 | es_ES |
dc.description.references | Mendez, C. B., Klenzendorf, J. B., Afshar, B. R., Simmons, M. T., Barrett, M. E., Kinney, K. A., Kirisits, M. J. 2011. The effect of roofing material on the quality of harvested rainwater. Water Research, 45(5), 2049-2059. https://doi.org/10.1016/j.watres.2010.12.015 | es_ES |
dc.description.references | Minke, G. 2008. Techos verdes Planificación, ejecución, consejos prácticos - Buscar con Google. Recuperado 30 de mayo de 2016, a partir de https://www.google.com.co/webhp?sourceid=chrome-instant&ion=1&espv=2&ie=UTF-8#q=Techos+verdes+Planifica | es_ES |
dc.description.references | ci%C3%B3n%2C+ejecuci%C3%B3n%2C+consejos+pr%C3%A1cticos | es_ES |
dc.description.references | Nawazz, R., McDonald, A., Postoyko, S. 2015. Hydrological performance of a full-scale extensive green roof located in a temperate climate. Ecological Engineering, 82, 66-80. https://doi.org/10.1016/j.ecoleng.2014.11.061 | es_ES |
dc.description.references | Oberndorfer, E., Lundholm, J., Bass, B., Coffman, R. R., Doshi, H., Dunnett, N., … Rowe, B. 2007. Green Roofs as Urban Ecosystems: Ecological Structures, Functions, and Services. BioScience, 57(10), 823-833. https://doi.org/10.1641/B571005 | es_ES |
dc.description.references | OConnor, T., P. Culligan, T. Carson, S. Gaffin, R. Gibson, R. Hakimdavar, D. Hsueh, N. Hunter, D. Marasco, McGillis, W. 2014. Evaluation of Green Roof Water Quantity and Quality Performance in an Urban Climate. US EPA Office of Research and Development, Washington, DC, EPA/600/R-14/180. Recuperado 8 de noviembre de 2016, a partir de http://nepis.epa.gov/Adobe/PDF/P100KI19.pdf | es_ES |
dc.description.references | Pandula András. 2010. Extensive and intensive flat green roof structures. SZIE-YMMF. Recuperado a partir de http://iti.vgtu.lt/sure/Media/Default/Supplementary_information/Roger4Students/GreenRoofs.pdf | es_ES |
dc.description.references | Perales-Momparler, S., Hernández-Crespo, C., Vallés-Morán, F., Martín, M., Andrés-Doménech, I., Andreu Álvarez, J., Jefferies, C. 2014. SuDS Efficiency during the Start-Up Period under Mediterranean Climatic Conditions. CLEAN - Soil, Air, Water, 42(2), 178-186. https://doi.org/10.1002/clen.201300164 | es_ES |
dc.description.references | Portaluppi, L. 2014. Información de geomembranas de PVC y HDPE. Recuperado a partir de http://criarpeces.com.ar/wp-content/uploads/2014/03/Informaci%C3%B3n-de-las-geomembranas.pdf | es_ES |
dc.description.references | Razzaghmanesh, M., Beecham, S., Kazemi, F. 2014. Impact of green roofs on stormwater quality in a South Australian urban environment. Science of The Total Environment, 470-471, 651-659. https://doi.org/10.1016/j.scitotenv.2013.10.047 | es_ES |
dc.description.references | Rossatto, H., Moyano, G., Cazorla, L., Laureda, D., Meyer, M., Gamboa, P., … Kohan, D. 2015. Cubiertas vegetadas de tipo «extensivo» eficiencia en la retención del agua de lluvia de distinto tipo de vegetación implantada. Recuperado 31 de mayo de 2016, a partir de http://fido.palermo.edu/servicios_dyc/publicacionesdc/vista/detalle_articulo.php?id_articulo=10472&id_libro=506 | es_ES |
dc.description.references | Rowe, D. B. 2011. Green roofs as a means of pollution abatement. Environmental Pollution, 159(8-9), 2100-2110. https://doi.org/10.1016/j.envpol.2010.10.029 | es_ES |
dc.description.references | Scholz, S. M., Roberts, K., Lehmann, J., Sembres, T., Whitman, T., Wilson, K. 2014. Biochar systems for smallholders in developing countries: leveraging current knowledge and exploring future potential for climate-smart agriculture (No. 88888) (pp. 1-231). The World Bank. Recuperado a partir de http://documentos.bancomundial.org/curated/es/188461468048530729/Biochar-systems-forsmallholders-in-developing-countries-leveraging-current-knowledge-and-exploring-future-potential-for-climate-smart-agriculture | es_ES |
dc.description.references | Schwager, J., Schaal, L., Simonnot, M.-O., Claverie, R., Ruban, V., Morel, J.-L. 2014. Emission of trace elements and retention of Cu and Zn by mineral and organic materials used in green roofs. Journal of Soils and Sediments, 15(8), 1789-1801. https://doi.org/10.1007/s11368-014-0962-9 | es_ES |
dc.description.references | Seidl, M., Gromaire, M.-C., Saad, M., De Gouvello, B. 2013. Effect of substrate depth and rain-event history on the pollutant abatement of green roofs. Environmental Pollution, 183, 195-203. https://doi.org/10.1016/j.envpol.2013.05.026 | es_ES |
dc.description.references | Soto, J. G. 2002. Produccion de Abonos Organicos de Buena Calidad. Corpoica. | es_ES |
dc.description.references | Speak, A. F., Rothwell, J. J., Lindley, S. J., Smith, C. L. 2014. Metal and nutrient dynamics on an aged intensive green roof. Environmental Pollution, 184, 33-43. https://doi.org/10.1016/j.envpol.2013.08.017 | es_ES |
dc.description.references | Sultana, N., Akib, S., Ashraf, M. A., Abidin, M. R. Z. 2016. Quality assessment of harvested rainwater from green roofs under tropical climate. Desalination and Water Treatment, 57(1), 75-82. https://doi.org/10.1080/19443994.2015.1015307 | es_ES |
dc.description.references | Teemusk, A., Mander, Ü. 2007. Rainwater runoff quantity and quality performance from a greenroof: The effects of short-term events. Ecological Engineering, 30(3), 271-277. https://doi.org/10.1016/j.ecoleng.2007.01.009 | es_ES |
dc.description.references | Teemusk, A., Mander, Ü. 2011. The Influence of Green Roofs on Runoff Water Quality: A Case Study from Estonia. Water Resources Management, 25(14), 3699. https://doi.org/10.1007/s11269-011-9877-z | es_ES |
dc.description.references | Van Mechelen, C., Dutoit, T., Hermy, M. 2015. Adapting green roof irrigation practices for a sustainable future: A review. Sustainable Cities and Society, 19, 74-90. https://doi.org/10.1016/j.scs.2015.07.007 | es_ES |
dc.description.references | Vijayaraghavan, K., Joshi, U. M., Balasubramanian, R. 2012. A field study to evaluate runoff quality from green roofs. Water Research, 46, 1337-1345. https://doi.org/10.1016/j.watres.2011.12.050 | es_ES |
dc.description.references | Vijayaraghavan, K. 2016. Green roofs: A critical review on the role of components, benefits, limitations and trends. Renewable and Sustainable Energy Reviews, 57, 740-752. https://doi.org/10.1016/j.rser.2015.12.119 | es_ES |
dc.description.references | Vijayaraghavan, K., Joshi, U. M. 2014. Can green roof act as a sink for contaminants? A methodological study to evaluate runoff quality from green roofs. Environmental Pollution, 194, 121-129. https://doi.org/10.1016/j.envpol.2014.07.021 | es_ES |
dc.description.references | Vijayaraghavan, K., Joshi, U. M. 2015. Application of seaweed as substrate additive in green roofs: Enhancement of water retention and sorption capacity. Landscape and Urban Planning, 143, 25-32. https://doi.org/10.1016/j.landurbplan.2015.06.006 | es_ES |
dc.description.references | Vijayaraghavan, K., Raja, F. D. 2014. Design and development of green roof substrate to improve runoff water quality: Plant growth experiments and adsorption. Water Research, 63, 94-101. https://doi.org/10.1016/j.watres.2014.06.012 | es_ES |
dc.description.references | Vijayaraghavan, K., Raja, F. D. 2015. Interaction of Vermiculite with Pb(II), Cd(II), Cu(II) and Ni(II) Ions in Single and Quaternary Mixtures. CLEAN - Soil, Air, Water, 43(8), 1174-1180. https://doi.org/10.1002/clen.201400423 | es_ES |
dc.description.references | Whittinghill, L. J., Hsueh, D., Culligan, P., Plunz, R. 2016. Stormwater performance of a full scale rooftop farm: Runoff water quality. Ecological Engineering, 91, 195-206. https://doi.org/10.1016/j.ecoleng.2016.01.047 | es_ES |
dc.description.references | Wilkinson, S., Lamond, J., Proverbs, D. G., Sharman, L., Heller, A., Manion, J. 2015. Technical considerations in green roof retrofit for stormwater attenuation in the Central Business District. Structural Survey, 33(1), 36-51. https://doi.org/10.1108/SS-07-2014-0031 | es_ES |
dc.description.references | Ye, J., Liu, C., Zhao, Z., Li, Y., Yu, S. 2013. Heavy metals in plants and substrate from simulated extensive green roofs. Ecological Engineering, 55, 29-34. https://doi.org/10.1016/j.ecoleng.2013.02.012 | es_ES |
dc.description.references | Zhang, Q., Miao, L., Wang, X., Liu, D., Zhu, L., Zhou, B., … Liu, J. 2015. The capacity of greening roof to reduce stormwater runoff and pollution. Landscape and Urban Planning, 144, 142-150. https://doi.org/10.1016/j.landurbplan.2015.08.017 | es_ES |