- -

All-Optical Fiber Hanbury Brown & Twiss Interferometer to study 1300 nm single photon emission of a metamorphic InAs Quantum Dot

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

All-Optical Fiber Hanbury Brown & Twiss Interferometer to study 1300 nm single photon emission of a metamorphic InAs Quantum Dot

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Muñoz Matutano, Guillermo es_ES
dc.contributor.author Barrera Vilar, David es_ES
dc.contributor.author Fernandez-Pousa, C. R. es_ES
dc.contributor.author Chulia-Jordan, R. es_ES
dc.contributor.author Seravalli. L. es_ES
dc.contributor.author Trevisi, G. es_ES
dc.contributor.author Frigeri, P. es_ES
dc.contributor.author Sales Maicas, Salvador es_ES
dc.contributor.author Martinez-Pastor, J. es_ES
dc.date.accessioned 2017-12-11T11:06:30Z
dc.date.available 2017-12-11T11:06:30Z
dc.date.issued 2016 es_ES
dc.identifier.issn 2045-2322 es_ES
dc.identifier.uri http://hdl.handle.net/10251/92364
dc.description.abstract [EN] New optical fiber based spectroscopic tools open the possibility to develop more robust and efficient characterization experiments. Spectral filtering and light reflection have been used to produce compact and versatile fiber based optical cavities and sensors. Moreover, these technologies would be also suitable to study N-photon correlations, where high collection efficiency and frequency tunability is desirable. We demonstrated single photon emission of a single quantum dot emitting at 1300 nm, using a Fiber Bragg Grating for wavelength filtering and InGaAs Avalanche Photodiodes operated in Geiger mode for single photon detection. As we do not observe any significant fine structure splitting for the neutral exciton transition within our spectral resolution (46 mu eV), metamorphic QD single photon emission studied with our all-fiber Hanbury Brown & Twiss interferometer could lead to a more efficient analysis of entangled photon sources at telecom wavelength. This all-optical fiber scheme opens the door to new first and second order interferometers to study photon indistinguishability, entangled photon and photon cross correlation in the more interesting telecom wavelengths. es_ES
dc.description.sponsorship G Munoz-Matutano thanks the Spanish Juan de la Cierva program (JCI-2011-10686). We acknowledge the support of the Spanish MINECO through projects TEC2014-53727-C2-1-R & TEC2014-60378-C2-1-R, the Research Excellency Award Program GVA PROMETEO 2013/012 PROMETEOII/2014/059 and the Explora Ciencia Tecnologia TEC2013-50552-EXP MULTIFUN project, and the Nanoscale Quantum Optics MPNS COST Action MP1403. es_ES
dc.language Inglés es_ES
dc.publisher Nature Publishing Group es_ES
dc.relation.ispartof Scientific Reports es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject New optical fiber based spectroscopic es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title All-Optical Fiber Hanbury Brown & Twiss Interferometer to study 1300 nm single photon emission of a metamorphic InAs Quantum Dot es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1038/srep27214 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//JCI-2011-10686/ES/JCI-2011-10686/
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2013%2F012/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2014%2F059/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/COST//MP1403/ES/Nanoscale Quantum Optics/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TEC2014-53727-C2-1-R/ES/DISPOSITIVOS OPTOELECTRONICOS Y FOTONICOS BASADOS EN NANOMATERIALES AVANZADOS: DESDE NUEVOS CONCEPTOS DE NANOFOTONICA HASTA PROCESOS Y DISPOSITIVOS ?VERDES"/
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TEC2014-60378-C2-1-R/ES/FOTONICA DE MICROONDAS PARA APLICACIONES EMERGENTES/
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TEC2013-50552-EXP/ES/MULTICORE OPTICAL FIBERS FOR UNCOVENTIONAL APPLICATIONS/
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia es_ES
dc.description.bibliographicCitation Muñoz Matutano, G.; Barrera Vilar, D.; Fernandez-Pousa, CR.; Chulia-Jordan, R.; Seravalli. L.; Trevisi, G.; Frigeri, P.... (2016). All-Optical Fiber Hanbury Brown & Twiss Interferometer to study 1300 nm single photon emission of a metamorphic InAs Quantum Dot. Scientific Reports. 6(2721):1-9. https://doi.org/10.1038/srep27214 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1038/srep27214 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 9 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 6 es_ES
dc.description.issue 2721 es_ES
dc.identifier.pmid 27257122 en_EN
dc.identifier.pmcid PMC4891669 en_EN
dc.relation.pasarela S\326581 es_ES
dc.contributor.funder Ministerio de Economía, Industria y Competitividad es_ES
dc.contributor.funder European Cooperation in Science and Technology es_ES
dc.contributor.funder Generalitat Valenciana
dc.contributor.funder Ministerio de Ciencia e Innovación
dc.description.references Walmsley, I. A. Quantum optics: Science and technology in a new light. Science 348, 525–530 (2015). es_ES
dc.description.references Eisaman, M. D., Fan, J., Migdall, A. & Polyakov, S. Invited review article: single-photon sources and detectors. Rev. Sci. Instrum. 82, 071101 (2011). es_ES
dc.description.references Lu, C.-L. & Pan, J.-W. Push-button photon entanglement. Nat. Photonics 8, 174–176 (2014). es_ES
dc.description.references Benson, O., Santori, C., Pelton, M. & Yamamoto, Y. Regulated and entangled photons from a single quantum dot. Phys. Rev. Lett. 84, 2513–2516 (2000). es_ES
dc.description.references Yuan, Z. et al. Electrically driven single-photon source. Science 295, 102–105 (2002). es_ES
dc.description.references Salter, C. L. et al. An entangled-light-emitting diode. Nature 465, 594–597 (2010). es_ES
dc.description.references Brunner, D. et al. A coherent single-hole spin in a semiconductor. Science 325, 70–72 (2009). es_ES
dc.description.references Müller, M., Bounouar, S., Jöns, K. D., Glässl, M. & Michler, P. On-demand generation of indistinguishable polarization-entangled photon pairs. Nat. Photonics 8, 234–238 (2014). es_ES
dc.description.references Seguin, R. et al. Size-dependent fine-structure splitting in self-organized InAs/GaAs quantum dots. Phys. Rev. Lett. 95, 257402 (2005). es_ES
dc.description.references Hadfield, R. H. Single-photon detectors for optical quantum information applications. Nat. Photonics 3, 696–705 (2009). es_ES
dc.description.references Zinoni, C. et al. Time-resolved and antibunching experiments on single quantum dots at 1300nm. Appl. Phys. Lett. 88, 131102 (2006). es_ES
dc.description.references Liu, X. et al. Single-photon emission in telecommunication band from an InAs quantum dot grown on InP with molecular-beam epitaxy. Appl. Phys. Lett. 103, 061114 (2013). es_ES
dc.description.references Benyoucef, M., Yacob, M., Reithmaier, J. P., Kettler, J. & Michler, P. Telecom-wavelength (1.5 μm) single-photon emission from InP-based quantum dots. Appl. Phys. Lett. 103, 162101 (2013). es_ES
dc.description.references Ward, M. et al. Coherent dynamics of a telecom-wavelength entangled photon source. Nat. Commun. 5, 3316 (2014). es_ES
dc.description.references Rakher, M. T. et al. Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion. Nat. Photonics 4, 786–791 (2010). es_ES
dc.description.references Muñoz-Matutano, G. et al. Time resolved emission at 1.3 μm of a single InAs quantum dot by using a tunable fibre Bragg grating. Nanotechnology 25, 035204 (2014). es_ES
dc.description.references Ediger, M. et al. Peculiar many-body effects revealed in the spectroscopy of highly charged quantum dots. Nature Phys. 3, 774–779 (2007). es_ES
dc.description.references Gerardot, B. D. et al. Laser spectroscopy of individual quantum dots charged with a single hole. Appl. Phys. Lett. 99, 243112 (2011). es_ES
dc.description.references Gomis-Bresco, J. et al. Random population model to explain the recombination dynamics in single InAs/GaAs quantum dots under selective optical pumping. New J. Phys. 13, 023022 (2011). es_ES
dc.description.references Ediger, M. et al. Fine structure of negatively and positively charged excitons in semiconductor quantum dots: electron-hole asymmetry. Phys. Rev. Lett. 98, 036808 (2007). es_ES
dc.description.references Warming, T. et al. Hole-hole and electron-hole exchange interactions in single InAs/GaAs quantum dots. Phys. Rev. B 79, 125316 (2009). es_ES
dc.description.references Benny, Y. et al. Excitation spectroscopy of single quantum dots at tunable positive, neutral and negative charge states. Phys. Rev. B 86, 085306 (2012). es_ES
dc.description.references Muñoz-Matutano, G. et al. Selective optical pumping of charged excitons in unintentionally doped InAs quantum dots. Nanotechnology 19, 145711 (2008). es_ES
dc.description.references Ha, N. et al. Size-dependent line broadening in the emission spectra of single GaAs quantum dots: Impact of surface charge on spectral diffusion. Phys. Rev. B 92, 075306 (2015). es_ES
dc.description.references Moskalenko, E. S. et al. Influence of excitation energy on charged exciton formation in self-assembled InAs single quantum dots. Phys. Rev. B 64, 085302 (2001). es_ES
dc.description.references Rivas, D. et al. Two-color single-photon emission from InAs quantum dots: toward logic information management using quantum light. Nano Lett. 14, 456–463 (2014). es_ES
dc.description.references Dekel, E. et al. Cascade evolution and radiative recombination of quantum dot multiexcitons studied by time-resolved spectroscopy. Phys. Rev. B 62, 11038 (2000). es_ES
dc.description.references Wimmer, M., Nair, S. & Shumway, J. Biexciton recombination rates in self-assembled quantum dots. Phys. Rev. B 73, 165305 (2006). es_ES
dc.description.references Dalgarno, P. A. et al. Coulomb interactions in single charged self-assembled quantum dots: Radiative lifetime and recombination energy. Phys. Rev. B 77, 245311 (2008). es_ES
dc.description.references Muñoz-Matutano, G. et al. Exciton, biexciton and trion recombination dynamics in a single quantum dot under selective optical pumping. Physica E 40, 2100–2103 (2008). es_ES
dc.description.references Birkedal, D., Leosson, K. & Hvam, J. M. Long lived coherence in self-assembled quantum dots. Phys. Rev. Lett. 87, 227401 (2001). es_ES
dc.description.references Tartakovskii, A. et al. Effect of thermal annealing and strain engineering on the fine structure of quantum dot excitons. Phys. Rev. B 70, 193303 (2004). es_ES
dc.description.references Goldmann, E., Barthel, S., Florian, M., Schuh, K. & Jahnke, F. Excitonic fine-structure splitting in telecom-wavelength InAs/GaAs quantum dots: statistical distribution and height-dependence. Appl. Phys. Lett. 103, 242102 (2004). es_ES
dc.description.references Seravalli, L., Trevisi, G. & Frigeri, P. 2D–3D growth transition in metamorphic InAs/InGaAs quantum dots. Cryst. Eng. Comm. 14, 1155–1160 (2012). es_ES
dc.description.references Akimov, I., Kavokin, K., Hundt, A. & Henneberger, F. Electron-hole exchange interaction in a negatively charged quantum dot. Phys. Rev. B 71, 075326 (2005). es_ES
dc.description.references Brouri, R., Beveratos, A., Poizat, J. & Grangier, P. Photon antibunching in the fluorescence of individual color centers in diamond. Opt. Lett. 25, 1294–1296 (2000). es_ES
dc.description.references Mandel, L. & Wolf, E. Optical Coherence and Quantum Optics. Cambridge University Press (1995). es_ES
dc.description.references Seravalli, L., Frigeri, P., Trevisi, G. & Franchi, S. 1.59 μm room temperature emission from metamorphic InAs∕InGaAsInAs∕InGaAs quantum dots grown on GaAs substrates. Appl. Phys. Lett. 92, 213104 (2008). es_ES
dc.description.references Gonzalez-Tudela, A., Laussy, F. P., Tejedor, C., Hartmann, M. J. & del Valle, E. Two-photon spectra of quantum emitters. New J. Phys. 15, 033036 (2013). es_ES
dc.description.references Peiris, M. et al. Two-color photon correlations of the light scattered by a quantum dot. Phys. Rev. B 91, 195125 (2015). es_ES
dc.description.references Venghaus, L. Wavelength Filters in Fibre Optics. Springer Series in Optical Sciences Vol 123 (2006). es_ES
dc.description.references Seravalli, L. et al. Single quantum dot emission at telecom wavelengths from metamorphic InAs/InGaAs nanostructures grown on GaAs substrates. Appl. Phys. Lett. 98, 173112 (2011). es_ES
dc.description.references Seravalli, L. et al. Quantum dot strain engineering of InAs∕InGaAsInAs∕InGaAs nanostructures. J. Appl. Phys. 101, 024313 (2007). es_ES
dc.description.references Seravalli, L., Trevisi, G. & Frigeri, P. Design and growth of metamorphic InAs/InGaAs quantum dots for single photon emission in the telecom window. Crys. Eng. Comm. 14, 6833–6838 (2012). es_ES
dc.description.references Seravalli, L., Frigeri, P., Nasi, L., Trevisi, G. & Bocchi, C. Metamorphic quantum dots: quite different nanostructures. J. Appl. Phys. 108, 064324 (2010). es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem