Mostrar el registro sencillo del ítem
dc.contributor.author | Muñoz Matutano, Guillermo | es_ES |
dc.contributor.author | Barrera Vilar, David | es_ES |
dc.contributor.author | Fernandez-Pousa, C. R. | es_ES |
dc.contributor.author | Chulia-Jordan, R. | es_ES |
dc.contributor.author | Seravalli. L. | es_ES |
dc.contributor.author | Trevisi, G. | es_ES |
dc.contributor.author | Frigeri, P. | es_ES |
dc.contributor.author | Sales Maicas, Salvador | es_ES |
dc.contributor.author | Martinez-Pastor, J. | es_ES |
dc.date.accessioned | 2017-12-11T11:06:30Z | |
dc.date.available | 2017-12-11T11:06:30Z | |
dc.date.issued | 2016 | es_ES |
dc.identifier.issn | 2045-2322 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/92364 | |
dc.description.abstract | [EN] New optical fiber based spectroscopic tools open the possibility to develop more robust and efficient characterization experiments. Spectral filtering and light reflection have been used to produce compact and versatile fiber based optical cavities and sensors. Moreover, these technologies would be also suitable to study N-photon correlations, where high collection efficiency and frequency tunability is desirable. We demonstrated single photon emission of a single quantum dot emitting at 1300 nm, using a Fiber Bragg Grating for wavelength filtering and InGaAs Avalanche Photodiodes operated in Geiger mode for single photon detection. As we do not observe any significant fine structure splitting for the neutral exciton transition within our spectral resolution (46 mu eV), metamorphic QD single photon emission studied with our all-fiber Hanbury Brown & Twiss interferometer could lead to a more efficient analysis of entangled photon sources at telecom wavelength. This all-optical fiber scheme opens the door to new first and second order interferometers to study photon indistinguishability, entangled photon and photon cross correlation in the more interesting telecom wavelengths. | es_ES |
dc.description.sponsorship | G Munoz-Matutano thanks the Spanish Juan de la Cierva program (JCI-2011-10686). We acknowledge the support of the Spanish MINECO through projects TEC2014-53727-C2-1-R & TEC2014-60378-C2-1-R, the Research Excellency Award Program GVA PROMETEO 2013/012 PROMETEOII/2014/059 and the Explora Ciencia Tecnologia TEC2013-50552-EXP MULTIFUN project, and the Nanoscale Quantum Optics MPNS COST Action MP1403. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Nature Publishing Group | es_ES |
dc.relation.ispartof | Scientific Reports | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | New optical fiber based spectroscopic | es_ES |
dc.subject.classification | TEORIA DE LA SEÑAL Y COMUNICACIONES | es_ES |
dc.title | All-Optical Fiber Hanbury Brown & Twiss Interferometer to study 1300 nm single photon emission of a metamorphic InAs Quantum Dot | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1038/srep27214 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//JCI-2011-10686/ES/JCI-2011-10686/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2013%2F012/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2014%2F059/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/COST//MP1403/ES/Nanoscale Quantum Optics/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TEC2014-53727-C2-1-R/ES/DISPOSITIVOS OPTOELECTRONICOS Y FOTONICOS BASADOS EN NANOMATERIALES AVANZADOS: DESDE NUEVOS CONCEPTOS DE NANOFOTONICA HASTA PROCESOS Y DISPOSITIVOS ?VERDES"/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TEC2014-60378-C2-1-R/ES/FOTONICA DE MICROONDAS PARA APLICACIONES EMERGENTES/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TEC2013-50552-EXP/ES/MULTICORE OPTICAL FIBERS FOR UNCOVENTIONAL APPLICATIONS/ | |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia | es_ES |
dc.description.bibliographicCitation | Muñoz Matutano, G.; Barrera Vilar, D.; Fernandez-Pousa, CR.; Chulia-Jordan, R.; Seravalli. L.; Trevisi, G.; Frigeri, P.... (2016). All-Optical Fiber Hanbury Brown & Twiss Interferometer to study 1300 nm single photon emission of a metamorphic InAs Quantum Dot. Scientific Reports. 6(2721):1-9. https://doi.org/10.1038/srep27214 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://doi.org/10.1038/srep27214 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 9 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 6 | es_ES |
dc.description.issue | 2721 | es_ES |
dc.identifier.pmid | 27257122 | en_EN |
dc.identifier.pmcid | PMC4891669 | en_EN |
dc.relation.pasarela | S\326581 | es_ES |
dc.contributor.funder | Ministerio de Economía, Industria y Competitividad | es_ES |
dc.contributor.funder | European Cooperation in Science and Technology | es_ES |
dc.contributor.funder | Generalitat Valenciana | |
dc.contributor.funder | Ministerio de Ciencia e Innovación | |
dc.description.references | Walmsley, I. A. Quantum optics: Science and technology in a new light. Science 348, 525–530 (2015). | es_ES |
dc.description.references | Eisaman, M. D., Fan, J., Migdall, A. & Polyakov, S. Invited review article: single-photon sources and detectors. Rev. Sci. Instrum. 82, 071101 (2011). | es_ES |
dc.description.references | Lu, C.-L. & Pan, J.-W. Push-button photon entanglement. Nat. Photonics 8, 174–176 (2014). | es_ES |
dc.description.references | Benson, O., Santori, C., Pelton, M. & Yamamoto, Y. Regulated and entangled photons from a single quantum dot. Phys. Rev. Lett. 84, 2513–2516 (2000). | es_ES |
dc.description.references | Yuan, Z. et al. Electrically driven single-photon source. Science 295, 102–105 (2002). | es_ES |
dc.description.references | Salter, C. L. et al. An entangled-light-emitting diode. Nature 465, 594–597 (2010). | es_ES |
dc.description.references | Brunner, D. et al. A coherent single-hole spin in a semiconductor. Science 325, 70–72 (2009). | es_ES |
dc.description.references | Müller, M., Bounouar, S., Jöns, K. D., Glässl, M. & Michler, P. On-demand generation of indistinguishable polarization-entangled photon pairs. Nat. Photonics 8, 234–238 (2014). | es_ES |
dc.description.references | Seguin, R. et al. Size-dependent fine-structure splitting in self-organized InAs/GaAs quantum dots. Phys. Rev. Lett. 95, 257402 (2005). | es_ES |
dc.description.references | Hadfield, R. H. Single-photon detectors for optical quantum information applications. Nat. Photonics 3, 696–705 (2009). | es_ES |
dc.description.references | Zinoni, C. et al. Time-resolved and antibunching experiments on single quantum dots at 1300nm. Appl. Phys. Lett. 88, 131102 (2006). | es_ES |
dc.description.references | Liu, X. et al. Single-photon emission in telecommunication band from an InAs quantum dot grown on InP with molecular-beam epitaxy. Appl. Phys. Lett. 103, 061114 (2013). | es_ES |
dc.description.references | Benyoucef, M., Yacob, M., Reithmaier, J. P., Kettler, J. & Michler, P. Telecom-wavelength (1.5 μm) single-photon emission from InP-based quantum dots. Appl. Phys. Lett. 103, 162101 (2013). | es_ES |
dc.description.references | Ward, M. et al. Coherent dynamics of a telecom-wavelength entangled photon source. Nat. Commun. 5, 3316 (2014). | es_ES |
dc.description.references | Rakher, M. T. et al. Quantum transduction of telecommunications-band single photons from a quantum dot by frequency upconversion. Nat. Photonics 4, 786–791 (2010). | es_ES |
dc.description.references | Muñoz-Matutano, G. et al. Time resolved emission at 1.3 μm of a single InAs quantum dot by using a tunable fibre Bragg grating. Nanotechnology 25, 035204 (2014). | es_ES |
dc.description.references | Ediger, M. et al. Peculiar many-body effects revealed in the spectroscopy of highly charged quantum dots. Nature Phys. 3, 774–779 (2007). | es_ES |
dc.description.references | Gerardot, B. D. et al. Laser spectroscopy of individual quantum dots charged with a single hole. Appl. Phys. Lett. 99, 243112 (2011). | es_ES |
dc.description.references | Gomis-Bresco, J. et al. Random population model to explain the recombination dynamics in single InAs/GaAs quantum dots under selective optical pumping. New J. Phys. 13, 023022 (2011). | es_ES |
dc.description.references | Ediger, M. et al. Fine structure of negatively and positively charged excitons in semiconductor quantum dots: electron-hole asymmetry. Phys. Rev. Lett. 98, 036808 (2007). | es_ES |
dc.description.references | Warming, T. et al. Hole-hole and electron-hole exchange interactions in single InAs/GaAs quantum dots. Phys. Rev. B 79, 125316 (2009). | es_ES |
dc.description.references | Benny, Y. et al. Excitation spectroscopy of single quantum dots at tunable positive, neutral and negative charge states. Phys. Rev. B 86, 085306 (2012). | es_ES |
dc.description.references | Muñoz-Matutano, G. et al. Selective optical pumping of charged excitons in unintentionally doped InAs quantum dots. Nanotechnology 19, 145711 (2008). | es_ES |
dc.description.references | Ha, N. et al. Size-dependent line broadening in the emission spectra of single GaAs quantum dots: Impact of surface charge on spectral diffusion. Phys. Rev. B 92, 075306 (2015). | es_ES |
dc.description.references | Moskalenko, E. S. et al. Influence of excitation energy on charged exciton formation in self-assembled InAs single quantum dots. Phys. Rev. B 64, 085302 (2001). | es_ES |
dc.description.references | Rivas, D. et al. Two-color single-photon emission from InAs quantum dots: toward logic information management using quantum light. Nano Lett. 14, 456–463 (2014). | es_ES |
dc.description.references | Dekel, E. et al. Cascade evolution and radiative recombination of quantum dot multiexcitons studied by time-resolved spectroscopy. Phys. Rev. B 62, 11038 (2000). | es_ES |
dc.description.references | Wimmer, M., Nair, S. & Shumway, J. Biexciton recombination rates in self-assembled quantum dots. Phys. Rev. B 73, 165305 (2006). | es_ES |
dc.description.references | Dalgarno, P. A. et al. Coulomb interactions in single charged self-assembled quantum dots: Radiative lifetime and recombination energy. Phys. Rev. B 77, 245311 (2008). | es_ES |
dc.description.references | Muñoz-Matutano, G. et al. Exciton, biexciton and trion recombination dynamics in a single quantum dot under selective optical pumping. Physica E 40, 2100–2103 (2008). | es_ES |
dc.description.references | Birkedal, D., Leosson, K. & Hvam, J. M. Long lived coherence in self-assembled quantum dots. Phys. Rev. Lett. 87, 227401 (2001). | es_ES |
dc.description.references | Tartakovskii, A. et al. Effect of thermal annealing and strain engineering on the fine structure of quantum dot excitons. Phys. Rev. B 70, 193303 (2004). | es_ES |
dc.description.references | Goldmann, E., Barthel, S., Florian, M., Schuh, K. & Jahnke, F. Excitonic fine-structure splitting in telecom-wavelength InAs/GaAs quantum dots: statistical distribution and height-dependence. Appl. Phys. Lett. 103, 242102 (2004). | es_ES |
dc.description.references | Seravalli, L., Trevisi, G. & Frigeri, P. 2D–3D growth transition in metamorphic InAs/InGaAs quantum dots. Cryst. Eng. Comm. 14, 1155–1160 (2012). | es_ES |
dc.description.references | Akimov, I., Kavokin, K., Hundt, A. & Henneberger, F. Electron-hole exchange interaction in a negatively charged quantum dot. Phys. Rev. B 71, 075326 (2005). | es_ES |
dc.description.references | Brouri, R., Beveratos, A., Poizat, J. & Grangier, P. Photon antibunching in the fluorescence of individual color centers in diamond. Opt. Lett. 25, 1294–1296 (2000). | es_ES |
dc.description.references | Mandel, L. & Wolf, E. Optical Coherence and Quantum Optics. Cambridge University Press (1995). | es_ES |
dc.description.references | Seravalli, L., Frigeri, P., Trevisi, G. & Franchi, S. 1.59 μm room temperature emission from metamorphic InAs∕InGaAsInAs∕InGaAs quantum dots grown on GaAs substrates. Appl. Phys. Lett. 92, 213104 (2008). | es_ES |
dc.description.references | Gonzalez-Tudela, A., Laussy, F. P., Tejedor, C., Hartmann, M. J. & del Valle, E. Two-photon spectra of quantum emitters. New J. Phys. 15, 033036 (2013). | es_ES |
dc.description.references | Peiris, M. et al. Two-color photon correlations of the light scattered by a quantum dot. Phys. Rev. B 91, 195125 (2015). | es_ES |
dc.description.references | Venghaus, L. Wavelength Filters in Fibre Optics. Springer Series in Optical Sciences Vol 123 (2006). | es_ES |
dc.description.references | Seravalli, L. et al. Single quantum dot emission at telecom wavelengths from metamorphic InAs/InGaAs nanostructures grown on GaAs substrates. Appl. Phys. Lett. 98, 173112 (2011). | es_ES |
dc.description.references | Seravalli, L. et al. Quantum dot strain engineering of InAs∕InGaAsInAs∕InGaAs nanostructures. J. Appl. Phys. 101, 024313 (2007). | es_ES |
dc.description.references | Seravalli, L., Trevisi, G. & Frigeri, P. Design and growth of metamorphic InAs/InGaAs quantum dots for single photon emission in the telecom window. Crys. Eng. Comm. 14, 6833–6838 (2012). | es_ES |
dc.description.references | Seravalli, L., Frigeri, P., Nasi, L., Trevisi, G. & Bocchi, C. Metamorphic quantum dots: quite different nanostructures. J. Appl. Phys. 108, 064324 (2010). | es_ES |