Mostrar el registro sencillo del ítem
dc.contributor.author | Reig Valor, Carmina | es_ES |
dc.contributor.author | Martínez Fuentes, Amparo | es_ES |
dc.contributor.author | Mesejo Conejos, Carlos | es_ES |
dc.contributor.author | Rodrigo, M.J. | es_ES |
dc.contributor.author | Zacarias Garcia, Lorenzo | es_ES |
dc.contributor.author | Agustí Fonfría, Manuel | es_ES |
dc.date.accessioned | 2017-12-12T12:57:40Z | |
dc.date.available | 2017-12-12T12:57:40Z | |
dc.date.issued | 2016 | es_ES |
dc.identifier.issn | 0721-7595 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/92549 | |
dc.description.abstract | [EN] Loquat is considered as a non-climacteric fruit; however, there is an evidence of a climacteric-like maturation. Therefore, it seems its ripening behavior has yet to be satisfactory classified. Because autocatalytic regulation of ethylene production during fruit ripening is one of the primary features defining climacteric-like fruit maturation, we examined its ability of autocatalysis during ripening by applying the ethylene-releasing compound ethephon to the on-tree-fruit or ethylene to detached fruit of 'Algerie' loquat and measuring its ethylene and CO2 production. We also analyzed indoleacetic acid (IAA), gibberellin, cytokinin, and abscisic acid (ABA) contents as plant hormones involved in fruit ripening. The fruit response to ethephon (500 mg l(-1)) applied at color change was immediate producing increasing amounts of ethylene during the 4 h following the treatment, but 24 h after treatment onward values were similar to those produced by untreated fruit. Similar results were obtained when applying ethylene to detached fruit (10 mu l l(-1)). Accordingly, applying ethephon (200 mg l(-1)) did not advance harvest; neither the color nor the percentage of fruit harvested at the first picking date differed significantly from the untreated fruit. Flesh firmness, total soluble solid concentration, and acidity of juice were not significantly altered either. IAA concentration reached the maximum value when fruit stopped growing, declining sharply at fruit color change; active gibberellins and cytokinins declined continuously during the fruit growth period, and ABA content sharply increased during ripening, peaking after fruit color break. Results indicate that 'Algerie' loquat lacks a ripening-associated autocatalytic rise in ethylene production, and suggest that a decline in gibberellin, cytokinin, and IAA concentrations might be needed to allow its ripening process to proceed. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Journal of Plant Growth Regulation | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Loquat | es_ES |
dc.subject | Ripening | es_ES |
dc.subject | Ethylene | es_ES |
dc.subject | CO2 | es_ES |
dc.subject | Plant hormones | es_ES |
dc.subject.classification | PRODUCCION VEGETAL | es_ES |
dc.title | Loquat Fruit Lacks a Ripening-Associated Autocatalytic Rise in Ethylene Production | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s00344-015-9528-3 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Producción Vegetal - Departament de Producció Vegetal | es_ES |
dc.description.bibliographicCitation | Reig Valor, C.; Martínez Fuentes, A.; Mesejo Conejos, C.; Rodrigo, M.; Zacarias Garcia, L.; Agustí Fonfría, M. (2016). Loquat Fruit Lacks a Ripening-Associated Autocatalytic Rise in Ethylene Production. Journal of Plant Growth Regulation. 35(1):232-244. doi:10.1007/s00344-015-9528-3 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://doi.org/10.1007/s00344-015-9528-3 | es_ES |
dc.description.upvformatpinicio | 232 | es_ES |
dc.description.upvformatpfin | 244 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 35 | es_ES |
dc.description.issue | 1 | es_ES |
dc.relation.pasarela | S\316417 | es_ES |
dc.description.references | Agustí M, Guardiola JL, Almela V (1981) The regulation of fruit cropping in mandarins through the use of growth regulators. Proc Int Soc Citric 1:216–220 | es_ES |
dc.description.references | Amorós A, Zapata P, Pretel MT, Botella MA, Serrano M (2003) Physicochemical and physiological changes during fruit development and ripening of five loquat (Eriobotrya japonica Lindl.) cultivars. Food Sci Technol Int 9:43–51 | es_ES |
dc.description.references | Ben-Arie R, Bazak H, Blumenfeld A (1986) Gibberellin delays harvest and prolongs life of persimmon fruits. Acta Hortic 179:807–813 | es_ES |
dc.description.references | Ben-Arie R, Roisman Y, Zuthi Y, Blumenfeld A (1989) Gibberelllic acid reduces sensitivity of persimmon fruits to ethylene. In: Clijsters H, De Proft M, Marcelle R, Van Poucke M (eds) Biochemical and physiological aspects of ethylene production in lower and higher plants advances in agricultural technologies, vol 26. Springer, Netherlands, pp 165–171 | es_ES |
dc.description.references | Blumenfeld A (1980) Fruit growth of loquat. J Am Soc Hortic Sci 105:747–750 | es_ES |
dc.description.references | Brady CJ (1987) Fruit ripening. Ann Rev Plant Physiol 38:155–178 | es_ES |
dc.description.references | Cai C, Xu CJ, Li X, Ferguson I, Chen KS (2006) Accumulation of lignin in relation to change in activities of lignification enzymes in loquat fruit flesh after harvest. Postharv Biol Technol 40:163–169 | es_ES |
dc.description.references | Cherian S, Figueroa CR, Nair H (2014) ‘Movers and shakers’ in the regulation of fruit ripening: a cross-dissection of climacteric versus non-climacteric fruit. J Exp Bot 65:4705–4722 | es_ES |
dc.description.references | Ding CK, Chachin K, Ueda Y, Mochioka R (1998) Changes in polyphenol concentrations and polyphenol oxidase activity of loquat (Eriobotrya japonica Lindl.) fruit in relation to browning. J Jpn Soc Hortic Sci 676:360–366 | es_ES |
dc.description.references | Downs CG, Brady CJ, Campbell J, McGlasson WB (1991) Normal ripening cultivars of Pyrus serotina are either climacteric or non-climacteric. Sci Hortic 48:213–221 | es_ES |
dc.description.references | El-Otmani M, Coggins CW, Agustí M, Lovatt CJ (2000) Plant growth regulators in citriculture: world current uses. Crit Rev Plant Sci 19:395–447 | es_ES |
dc.description.references | Gambetta G, Martínez-Fuentes A, Betancour O, Mesejo C, Reig C, Gravina A, Agustí M (2012) Hormonal and nutritional changes in the flavedo regulating rind color development in sweet orange [Citrus sinensis (L.) Osb.]. J Plant Growth Regul 31:273–282 | es_ES |
dc.description.references | Gambetta G, Mesejo C, Martínez-Fuentes A, Reig C, Gravina A, Agustí M (2014) Gibberellic acid and norflurazon affecting the time-course of flavedo pigment and abscisic acid content in ‘Valencia’ sweet orange. Sci Hortic 180:94–101 | es_ES |
dc.description.references | García-Luis A, Agustí M, Almela V, Romero E, Guardiola JL (1985) Effect of gibberellic acid on ripening and peel puffing in Satsuma mandarin. Sci Hortic 27:75–86 | es_ES |
dc.description.references | Gariglio N, Juan M, Castillo A, Almela Agustí M (2002) Histological and physiological study of purple spot of loquat fruit. Sci Hortic 92:225–263 | es_ES |
dc.description.references | Giovannoni JJ (2001) Molecular biology of fruit maturation and ripening. Ann Rev Plant Physiol Mol Biol 52:725–749 | es_ES |
dc.description.references | Giovannoni JJ (2004) Genetic regulation of fruit development and ripening. Plant Cell 16:S170–S180 | es_ES |
dc.description.references | Given NK, Venis MA, Grierson D (1988) Hormonal-regulation of ripening in the strawberry, a non-climacteric fruit. Plant 174:402–406 | es_ES |
dc.description.references | Goldschmidt EE, Aharoni Y, Eilati SK, Riov J, Monselise SP (1977) Differential counteraction of ethylene effects by gibberellin A3 and N6 benzyladenine in senescing citrus peel. Plant Physiol 59:193–195 | es_ES |
dc.description.references | González L, Lafuente MT, Zacarías L (2003) Maturation of loquat fruit (Eriobotrya japonica Lindl.) under Spanish growing condition and its postharvest performance. Options Mediterr 58:171–179 | es_ES |
dc.description.references | Grierson D (2014) Ethylene biosynthesis. In: Nath P, Bouzayen M, Matoo AK, Pech JC (eds) Fruit ripening: physiology, signaling and genomics. CAB International, Wallinford, pp 178–192 | es_ES |
dc.description.references | Gross J, Bazak H, Blumenfeld A, Ben-Arie R (1984) Changes in chlorophyll and carotenoid pigments in the peel of ‘Triumph’ persimmon (Diospyros kaki L.) induced by pre-harvest gibberellin (GA3) treatment. Sci Hortic 24:305–314 | es_ES |
dc.description.references | Hirai M (1980) Sugar accumulation and development of loquat fruit. J Jpn Soc Hortic Sci 49:347–353 | es_ES |
dc.description.references | Jiang TM, Wang P, Yin XR, Zhang B, Xu CJ, Li X, Chen KS (2011) Ethylene biosynthesis and expression of related genes in loquat fruit at different developmental and ripening stages. Sci Hortic 130:452–458 | es_ES |
dc.description.references | Jiang X, Li H, Wang T, Peng C, Wang H, Wu H, Wang X (2012) Gibberellin indirectly promotes chloroplast biogenesis as a means to maintain the chloroplast population of expanded cells. Plant J 72:768–780 | es_ES |
dc.description.references | Jones B, Frasse P, Olmose Zegzouti H, Li ZG, Latche A, Pech JC, Bouzayen M (2002) Down-regulation of DR12, an auxin-response-factor homolog, in the tomato results in a pleiotropic phenotype including dark green and blotchy ripening fruit. Plant J 32:603–613 | es_ES |
dc.description.references | Kader AA (2002) Biology and technology: an overview. In: Kader AA (ed) Postharvest technology and horticultural crops. University of California. Agriculture and Natural Resources, Publication 3311, pp 39–48 | es_ES |
dc.description.references | Khader SESA (1991) Effect of preharvest application of GA3 on postharvest behaviour of mango fruits. Sci Hortic 47:317–321 | es_ES |
dc.description.references | Kumar R, Khurana A, Sharma AK (2014) Role of plant hormones and their interplay in development and ripening of fleshy fruits. J Exp Bot 65:4561–4575 | es_ES |
dc.description.references | Kuraoka T, Iwasaki K, Ishii T (1977) Effects of GA3 on puffing and levels of GA3-like substances and ABA in the peel of Satsuma mandarin (Citrus unshiu Marc.). J Am Soc Hortic Sci 102:651–654 | es_ES |
dc.description.references | Lado J, Rodrigo MJ, Zacarías L (2015) Analysis of ethylene biosynthesis and perception during postharvest cold storage of Marsh and Star Ruby grapefruits. Food Sci Technol Int. doi: 10.1177/1082013214553810 | es_ES |
dc.description.references | Lafuente MT, Zacarías L, Martínez-Téllez MA, Sánchez-Ballesta MT, Dupille E (2001) Phenylalanine ammonia-lyase as related to ethylene in the development of chilling symptoms during cold storage of citrus fruits. J Agric Food Chem 49:6020–6025 | es_ES |
dc.description.references | Lelievre JM, Latche A, Jones B, Bouzayen M, Pech JC (1997) Ethylene and fruit ripening. Physiol Plant 101:727–739 | es_ES |
dc.description.references | Leng P, Yuan B, Guo Y, Chen P (2014) The role of abscisic acid in fruit ripening and responses to abiotic stress. J Exp Bot 65:4577–4588 | es_ES |
dc.description.references | Looney NE, Granger RL, Chu CL, McArtney SJ, Mander LN, Pharis RP (1992) Influences of gibberellins A4, A4+7, and A4 +iso-A7 on apple fruit quality and tree productivity. I. Effects on fruit russet and tree yield components. J Hortic Sci 67:613–618 | es_ES |
dc.description.references | Lou H, Chen P, Sheng H, Xu C, Lu H (2012) Effect of kinetin on quality and harvest date of loquat fruit. Afr J Agric Res 7:1577–1583 | es_ES |
dc.description.references | Lurie S, Klein JD (1989) Cyanide metabolism in relation to ethylene production in climacteric and non-climacteric fruits. J Plant Physiol 135:518–521 | es_ES |
dc.description.references | Manning K (1993) Soft Fruit. In: Seymour GB, Taylor JE, Tucker GA (eds) Biochemistry of fruit ripening. Chapman & Hall, London, pp 347–378 | es_ES |
dc.description.references | Manning K (1994) Changes in gene expression during strawberry fruit ripening and their regulation by auxin. Planta 194:62–68 | es_ES |
dc.description.references | Martínez-Calvo J, Badenes ML, Llácer G, Bleiholder H, Hack H, Meier U (1999) Phenological growth stages of loquat tree (Eriobotrya japonica (Thunb) Lindl.). Ann App Biol 134:353–357 | es_ES |
dc.description.references | Martínez-Romero D, Valero D, Serrano M, Burló F, Carbonell A, Burgos L, Riquelme F (2000) Exogenous polyamines and gibberellic acid effects on peach (Prunus persica L.) storability improvement. J Food Sci 65:288–294 | es_ES |
dc.description.references | McAtee P, Karim S, Schaffer R, David K (2013) A dynamic interplay between phytohormones is required for fruit development, maturation, and ripening. Front Plant Sci 4:1–7 | es_ES |
dc.description.references | McMurchie EJ, McGlasson WB, Eaks IL (1972) Treatments of fruit with propylene gives information about the biogenesis of ethylene. Nature 237:235–236 | es_ES |
dc.description.references | Mullins ED, McCollum TG, McDonald RE (2000) Consequences on ethylene metabolism of inactivating the ethylene receptor sites in diseased non-climacteric fruit. Posharvest Biol Technol 19:155–164 | es_ES |
dc.description.references | Pareek S, Benkeblia N, Janick J, Cao S, Yahia EM (2014) Postharvest physiology and technology of loquat (Eriobotrya japonica Lindl.) fruit. J Sci Food Agric 94:1495–1504 | es_ES |
dc.description.references | Paul V, Pandey R, Srivastava GC (2012) The fading distinctions between classical patterns of ripening in climacteric and non-climacteric fruit and the ubiquity of ethylene—an everview. J Food Sci Technol 49:1–21 | es_ES |
dc.description.references | Peacock BC (1972) Role of ethylene in the initiation of fruit ripening. Queensl J Agric Anim Sci 29:137–145 | es_ES |
dc.description.references | Purvis AC, Barmore CR (1981) Involvement of ethylene in chlorophyll degradation in peel of citrus fruits. Plant Physiol 68:854–856 | es_ES |
dc.description.references | Rayle DL, Cleland R (1972) The in vitro acid-growth response: relation to in vivo growth responses and auxin action. Planta 104:282–296 | es_ES |
dc.description.references | Reig C, Martínez-Fuentes A, Juan M, Gariglio N, Marti G, Mesejo, Agustí M (2007) Técnicas para anticipar la recolección del fruto del níspero japonés (Eriobotrya japonica Lindl.). XI Cong. Nal. SECH, Abstract 4D01 | es_ES |
dc.description.references | Richmond AE, Lang A (1957) Effect of kinetin on protein content and survival of detached Xanthium leaves. Science 125:650–651 | es_ES |
dc.description.references | Rodrigo MJ, Marcos JF, Alferez F, Mallent MD, Zacarías L (2003) Characterization of pinalate, a novel Citrus sinensis mutant with a fruit specific alteration that results in yellow pigmentation and decreased ABA content. J Exp Bot 54:727–738 | es_ES |
dc.description.references | Rodrigo MJ, Alquezar B, Zacarias L (2006) Cloning and characterization of two 9-cis-epoxycarotenoid dioxygenase genes, differentially regulated during fruit maturation and under stress conditions, from orange (Citrus sinensis L. Osbeck). J Exp Bot 57:633–643 | es_ES |
dc.description.references | Schaffer RJ, Ireland HS, Ross JJ, Ling TJ, David KM (2013) SEPALLATA1/2-suppressed mature apples have low ethylene, high auxin and reduced transcription of ripening-related genes. AoB PLANTS 5:pls47. doi: 10.1093/aobpla/pls047 | es_ES |
dc.description.references | Seo M, Jikumaru Y, Kamiya Y (2011) Profiling of hormones and related metabolites in seed dormancy and germination studies. Methods Mol Biol 773:99–111 | es_ES |
dc.description.references | Singh R, Singh P, Pathak N, Singh VK, Dwivedi UN (2007) Modulation of mango ripening by chemicals: physiological and biochemical aspects. Plant Growth Regul 53:137–145 | es_ES |
dc.description.references | Sisler EC, Blankenship SM (1993) Diazocyclopentadiene, a light sensitive reagent for the ethylene receptor. Plant Growth Regul 12:125–132 | es_ES |
dc.description.references | Sisler EC, Serek M, Dupille E (1996) Comparison of cyclopropene, 1-methylcyclopropene and 3,3-dimethylcyclopropene as ethylene antagonists in plants. Plant Growth Regul 18:169–174 | es_ES |
dc.description.references | Southwick SM, Weis KG, Yeager JT (1995) Controlling cropping in ‘Loadel’ cling peach using gibberellin: effects on flower density, fruit distribution, fruit firmness, fruit thinning, and yield. J Am Soc Hortic Sci 120:1087–1095 | es_ES |
dc.description.references | Trebitsch T, Goldschmidt EE, Riov J (1993) Ethylene induces de novo synthesis of chlorophyllase, a chlorophyll degrading enzyme, in Citrus fruit peel. Proc Natl Acad Sci 90:9441–9445 | es_ES |
dc.description.references | Undurraga P, Olaeta JA (2003) Effect of ethephon (2-chloro ethylphosphonic acid) applied to the trees on fruit ripening in ‘Golden Niugget’ loquat (Eriobotrya japonica Lindl.). Options Mediterr 58:123–128 | es_ES |
dc.description.references | Undurraga P, Olaeta JA, Cancino C (2011) Ethylene, enzymatic and respiratory patterns evolution in loquat (Eriobotrya japonica (Thumb.) Lindl.) cv. Golden Nugget in the last four sequential stages of maturation. Chil J Agric Res 71:530–535 | es_ES |
dc.description.references | Yamane M, Abe D, Yasui S, Yokotani N, Kimata W, Ushijima K, Nakano R, Rubo Y, Inaba A (2007) Differential expression of ethylene biosynthetic genes in climacteric and non-climacteric Chinese pear fruit. Postharvest Biol Technol 44:220–227 | es_ES |
dc.description.references | Yang SF (1981) Biosynthesis of ethylene and its regulation. In: Friend J, Rhodes MJC (eds) Recent advances in the biochemistry of fruit and vegetables. Academic, London, pp 89–106 | es_ES |
dc.description.references | Yang SF, Hoffman NE (1984) EWthylene biosynthesis and its regulation in higher plants. Ann Rev Plant Physiol 35:155–189 | es_ES |
dc.description.references | Zaharah SS, Singh Z, Symons GM, Reid JB (2012) Role of brassinosteroids, ethylene, abscisic acid, and infloe-3-acetic acid in mango fruit ripening. J Plant Growth Regul 31:363–372 | es_ES |
dc.description.references | Zhang M, Yuan B, Leng P (2009) The role of ABA in triggering ethylene biosynthesis and ripening of tomato fruit. J Exp Bot 60:1579–1588 | es_ES |
dc.description.references | Zheng YH, Xi YF, Ying TJ (1993) Studies on postharvest respiration and ethylene production of loquat fruits. Acta Hortic Sin 2:111–115 | es_ES |