- -

Loquat Fruit Lacks a Ripening-Associated Autocatalytic Rise in Ethylene Production

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Loquat Fruit Lacks a Ripening-Associated Autocatalytic Rise in Ethylene Production

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Reig Valor, Carmina es_ES
dc.contributor.author Martínez Fuentes, Amparo es_ES
dc.contributor.author Mesejo Conejos, Carlos es_ES
dc.contributor.author Rodrigo, M.J. es_ES
dc.contributor.author Zacarias Garcia, Lorenzo es_ES
dc.contributor.author Agustí Fonfría, Manuel es_ES
dc.date.accessioned 2017-12-12T12:57:40Z
dc.date.available 2017-12-12T12:57:40Z
dc.date.issued 2016 es_ES
dc.identifier.issn 0721-7595 es_ES
dc.identifier.uri http://hdl.handle.net/10251/92549
dc.description.abstract [EN] Loquat is considered as a non-climacteric fruit; however, there is an evidence of a climacteric-like maturation. Therefore, it seems its ripening behavior has yet to be satisfactory classified. Because autocatalytic regulation of ethylene production during fruit ripening is one of the primary features defining climacteric-like fruit maturation, we examined its ability of autocatalysis during ripening by applying the ethylene-releasing compound ethephon to the on-tree-fruit or ethylene to detached fruit of 'Algerie' loquat and measuring its ethylene and CO2 production. We also analyzed indoleacetic acid (IAA), gibberellin, cytokinin, and abscisic acid (ABA) contents as plant hormones involved in fruit ripening. The fruit response to ethephon (500 mg l(-1)) applied at color change was immediate producing increasing amounts of ethylene during the 4 h following the treatment, but 24 h after treatment onward values were similar to those produced by untreated fruit. Similar results were obtained when applying ethylene to detached fruit (10 mu l l(-1)). Accordingly, applying ethephon (200 mg l(-1)) did not advance harvest; neither the color nor the percentage of fruit harvested at the first picking date differed significantly from the untreated fruit. Flesh firmness, total soluble solid concentration, and acidity of juice were not significantly altered either. IAA concentration reached the maximum value when fruit stopped growing, declining sharply at fruit color change; active gibberellins and cytokinins declined continuously during the fruit growth period, and ABA content sharply increased during ripening, peaking after fruit color break. Results indicate that 'Algerie' loquat lacks a ripening-associated autocatalytic rise in ethylene production, and suggest that a decline in gibberellin, cytokinin, and IAA concentrations might be needed to allow its ripening process to proceed. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Journal of Plant Growth Regulation es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Loquat es_ES
dc.subject Ripening es_ES
dc.subject Ethylene es_ES
dc.subject CO2 es_ES
dc.subject Plant hormones es_ES
dc.subject.classification PRODUCCION VEGETAL es_ES
dc.title Loquat Fruit Lacks a Ripening-Associated Autocatalytic Rise in Ethylene Production es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s00344-015-9528-3 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Producción Vegetal - Departament de Producció Vegetal es_ES
dc.description.bibliographicCitation Reig Valor, C.; Martínez Fuentes, A.; Mesejo Conejos, C.; Rodrigo, M.; Zacarias Garcia, L.; Agustí Fonfría, M. (2016). Loquat Fruit Lacks a Ripening-Associated Autocatalytic Rise in Ethylene Production. Journal of Plant Growth Regulation. 35(1):232-244. doi:10.1007/s00344-015-9528-3 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1007/s00344-015-9528-3 es_ES
dc.description.upvformatpinicio 232 es_ES
dc.description.upvformatpfin 244 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 35 es_ES
dc.description.issue 1 es_ES
dc.relation.pasarela S\316417 es_ES
dc.description.references Agustí M, Guardiola JL, Almela V (1981) The regulation of fruit cropping in mandarins through the use of growth regulators. Proc Int Soc Citric 1:216–220 es_ES
dc.description.references Amorós A, Zapata P, Pretel MT, Botella MA, Serrano M (2003) Physicochemical and physiological changes during fruit development and ripening of five loquat (Eriobotrya japonica Lindl.) cultivars. Food Sci Technol Int 9:43–51 es_ES
dc.description.references Ben-Arie R, Bazak H, Blumenfeld A (1986) Gibberellin delays harvest and prolongs life of persimmon fruits. Acta Hortic 179:807–813 es_ES
dc.description.references Ben-Arie R, Roisman Y, Zuthi Y, Blumenfeld A (1989) Gibberelllic acid reduces sensitivity of persimmon fruits to ethylene. In: Clijsters H, De Proft M, Marcelle R, Van Poucke M (eds) Biochemical and physiological aspects of ethylene production in lower and higher plants advances in agricultural technologies, vol 26. Springer, Netherlands, pp 165–171 es_ES
dc.description.references Blumenfeld A (1980) Fruit growth of loquat. J Am Soc Hortic Sci 105:747–750 es_ES
dc.description.references Brady CJ (1987) Fruit ripening. Ann Rev Plant Physiol 38:155–178 es_ES
dc.description.references Cai C, Xu CJ, Li X, Ferguson I, Chen KS (2006) Accumulation of lignin in relation to change in activities of lignification enzymes in loquat fruit flesh after harvest. Postharv Biol Technol 40:163–169 es_ES
dc.description.references Cherian S, Figueroa CR, Nair H (2014) ‘Movers and shakers’ in the regulation of fruit ripening: a cross-dissection of climacteric versus non-climacteric fruit. J Exp Bot 65:4705–4722 es_ES
dc.description.references Ding CK, Chachin K, Ueda Y, Mochioka R (1998) Changes in polyphenol concentrations and polyphenol oxidase activity of loquat (Eriobotrya japonica Lindl.) fruit in relation to browning. J Jpn Soc Hortic Sci 676:360–366 es_ES
dc.description.references Downs CG, Brady CJ, Campbell J, McGlasson WB (1991) Normal ripening cultivars of Pyrus serotina are either climacteric or non-climacteric. Sci Hortic 48:213–221 es_ES
dc.description.references El-Otmani M, Coggins CW, Agustí M, Lovatt CJ (2000) Plant growth regulators in citriculture: world current uses. Crit Rev Plant Sci 19:395–447 es_ES
dc.description.references Gambetta G, Martínez-Fuentes A, Betancour O, Mesejo C, Reig C, Gravina A, Agustí M (2012) Hormonal and nutritional changes in the flavedo regulating rind color development in sweet orange [Citrus sinensis (L.) Osb.]. J Plant Growth Regul 31:273–282 es_ES
dc.description.references Gambetta G, Mesejo C, Martínez-Fuentes A, Reig C, Gravina A, Agustí M (2014) Gibberellic acid and norflurazon affecting the time-course of flavedo pigment and abscisic acid content in ‘Valencia’ sweet orange. Sci Hortic 180:94–101 es_ES
dc.description.references García-Luis A, Agustí M, Almela V, Romero E, Guardiola JL (1985) Effect of gibberellic acid on ripening and peel puffing in Satsuma mandarin. Sci Hortic 27:75–86 es_ES
dc.description.references Gariglio N, Juan M, Castillo A, Almela Agustí M (2002) Histological and physiological study of purple spot of loquat fruit. Sci Hortic 92:225–263 es_ES
dc.description.references Giovannoni JJ (2001) Molecular biology of fruit maturation and ripening. Ann Rev Plant Physiol Mol Biol 52:725–749 es_ES
dc.description.references Giovannoni JJ (2004) Genetic regulation of fruit development and ripening. Plant Cell 16:S170–S180 es_ES
dc.description.references Given NK, Venis MA, Grierson D (1988) Hormonal-regulation of ripening in the strawberry, a non-climacteric fruit. Plant 174:402–406 es_ES
dc.description.references Goldschmidt EE, Aharoni Y, Eilati SK, Riov J, Monselise SP (1977) Differential counteraction of ethylene effects by gibberellin A3 and N6 benzyladenine in senescing citrus peel. Plant Physiol 59:193–195 es_ES
dc.description.references González L, Lafuente MT, Zacarías L (2003) Maturation of loquat fruit (Eriobotrya japonica Lindl.) under Spanish growing condition and its postharvest performance. Options Mediterr 58:171–179 es_ES
dc.description.references Grierson D (2014) Ethylene biosynthesis. In: Nath P, Bouzayen M, Matoo AK, Pech JC (eds) Fruit ripening: physiology, signaling and genomics. CAB International, Wallinford, pp 178–192 es_ES
dc.description.references Gross J, Bazak H, Blumenfeld A, Ben-Arie R (1984) Changes in chlorophyll and carotenoid pigments in the peel of ‘Triumph’ persimmon (Diospyros kaki L.) induced by pre-harvest gibberellin (GA3) treatment. Sci Hortic 24:305–314 es_ES
dc.description.references Hirai M (1980) Sugar accumulation and development of loquat fruit. J Jpn Soc Hortic Sci 49:347–353 es_ES
dc.description.references Jiang TM, Wang P, Yin XR, Zhang B, Xu CJ, Li X, Chen KS (2011) Ethylene biosynthesis and expression of related genes in loquat fruit at different developmental and ripening stages. Sci Hortic 130:452–458 es_ES
dc.description.references Jiang X, Li H, Wang T, Peng C, Wang H, Wu H, Wang X (2012) Gibberellin indirectly promotes chloroplast biogenesis as a means to maintain the chloroplast population of expanded cells. Plant J 72:768–780 es_ES
dc.description.references Jones B, Frasse P, Olmose Zegzouti H, Li ZG, Latche A, Pech JC, Bouzayen M (2002) Down-regulation of DR12, an auxin-response-factor homolog, in the tomato results in a pleiotropic phenotype including dark green and blotchy ripening fruit. Plant J 32:603–613 es_ES
dc.description.references Kader AA (2002) Biology and technology: an overview. In: Kader AA (ed) Postharvest technology and horticultural crops. University of California. Agriculture and Natural Resources, Publication 3311, pp 39–48 es_ES
dc.description.references Khader SESA (1991) Effect of preharvest application of GA3 on postharvest behaviour of mango fruits. Sci Hortic 47:317–321 es_ES
dc.description.references Kumar R, Khurana A, Sharma AK (2014) Role of plant hormones and their interplay in development and ripening of fleshy fruits. J Exp Bot 65:4561–4575 es_ES
dc.description.references Kuraoka T, Iwasaki K, Ishii T (1977) Effects of GA3 on puffing and levels of GA3-like substances and ABA in the peel of Satsuma mandarin (Citrus unshiu Marc.). J Am Soc Hortic Sci 102:651–654 es_ES
dc.description.references Lado J, Rodrigo MJ, Zacarías L (2015) Analysis of ethylene biosynthesis and perception during postharvest cold storage of Marsh and Star Ruby grapefruits. Food Sci Technol Int. doi: 10.1177/1082013214553810 es_ES
dc.description.references Lafuente MT, Zacarías L, Martínez-Téllez MA, Sánchez-Ballesta MT, Dupille E (2001) Phenylalanine ammonia-lyase as related to ethylene in the development of chilling symptoms during cold storage of citrus fruits. J Agric Food Chem 49:6020–6025 es_ES
dc.description.references Lelievre JM, Latche A, Jones B, Bouzayen M, Pech JC (1997) Ethylene and fruit ripening. Physiol Plant 101:727–739 es_ES
dc.description.references Leng P, Yuan B, Guo Y, Chen P (2014) The role of abscisic acid in fruit ripening and responses to abiotic stress. J Exp Bot 65:4577–4588 es_ES
dc.description.references Looney NE, Granger RL, Chu CL, McArtney SJ, Mander LN, Pharis RP (1992) Influences of gibberellins A4, A4+7, and A4 +iso-A7 on apple fruit quality and tree productivity. I. Effects on fruit russet and tree yield components. J Hortic Sci 67:613–618 es_ES
dc.description.references Lou H, Chen P, Sheng H, Xu C, Lu H (2012) Effect of kinetin on quality and harvest date of loquat fruit. Afr J Agric Res 7:1577–1583 es_ES
dc.description.references Lurie S, Klein JD (1989) Cyanide metabolism in relation to ethylene production in climacteric and non-climacteric fruits. J Plant Physiol 135:518–521 es_ES
dc.description.references Manning K (1993) Soft Fruit. In: Seymour GB, Taylor JE, Tucker GA (eds) Biochemistry of fruit ripening. Chapman & Hall, London, pp 347–378 es_ES
dc.description.references Manning K (1994) Changes in gene expression during strawberry fruit ripening and their regulation by auxin. Planta 194:62–68 es_ES
dc.description.references Martínez-Calvo J, Badenes ML, Llácer G, Bleiholder H, Hack H, Meier U (1999) Phenological growth stages of loquat tree (Eriobotrya japonica (Thunb) Lindl.). Ann App Biol 134:353–357 es_ES
dc.description.references Martínez-Romero D, Valero D, Serrano M, Burló F, Carbonell A, Burgos L, Riquelme F (2000) Exogenous polyamines and gibberellic acid effects on peach (Prunus persica L.) storability improvement. J Food Sci 65:288–294 es_ES
dc.description.references McAtee P, Karim S, Schaffer R, David K (2013) A dynamic interplay between phytohormones is required for fruit development, maturation, and ripening. Front Plant Sci 4:1–7 es_ES
dc.description.references McMurchie EJ, McGlasson WB, Eaks IL (1972) Treatments of fruit with propylene gives information about the biogenesis of ethylene. Nature 237:235–236 es_ES
dc.description.references Mullins ED, McCollum TG, McDonald RE (2000) Consequences on ethylene metabolism of inactivating the ethylene receptor sites in diseased non-climacteric fruit. Posharvest Biol Technol 19:155–164 es_ES
dc.description.references Pareek S, Benkeblia N, Janick J, Cao S, Yahia EM (2014) Postharvest physiology and technology of loquat (Eriobotrya japonica Lindl.) fruit. J Sci Food Agric 94:1495–1504 es_ES
dc.description.references Paul V, Pandey R, Srivastava GC (2012) The fading distinctions between classical patterns of ripening in climacteric and non-climacteric fruit and the ubiquity of ethylene—an everview. J Food Sci Technol 49:1–21 es_ES
dc.description.references Peacock BC (1972) Role of ethylene in the initiation of fruit ripening. Queensl J Agric Anim Sci 29:137–145 es_ES
dc.description.references Purvis AC, Barmore CR (1981) Involvement of ethylene in chlorophyll degradation in peel of citrus fruits. Plant Physiol 68:854–856 es_ES
dc.description.references Rayle DL, Cleland R (1972) The in vitro acid-growth response: relation to in vivo growth responses and auxin action. Planta 104:282–296 es_ES
dc.description.references Reig C, Martínez-Fuentes A, Juan M, Gariglio N, Marti G, Mesejo, Agustí M (2007) Técnicas para anticipar la recolección del fruto del níspero japonés (Eriobotrya japonica Lindl.). XI Cong. Nal. SECH, Abstract 4D01 es_ES
dc.description.references Richmond AE, Lang A (1957) Effect of kinetin on protein content and survival of detached Xanthium leaves. Science 125:650–651 es_ES
dc.description.references Rodrigo MJ, Marcos JF, Alferez F, Mallent MD, Zacarías L (2003) Characterization of pinalate, a novel Citrus sinensis mutant with a fruit specific alteration that results in yellow pigmentation and decreased ABA content. J Exp Bot 54:727–738 es_ES
dc.description.references Rodrigo MJ, Alquezar B, Zacarias L (2006) Cloning and characterization of two 9-cis-epoxycarotenoid dioxygenase genes, differentially regulated during fruit maturation and under stress conditions, from orange (Citrus sinensis L. Osbeck). J Exp Bot 57:633–643 es_ES
dc.description.references Schaffer RJ, Ireland HS, Ross JJ, Ling TJ, David KM (2013) SEPALLATA1/2-suppressed mature apples have low ethylene, high auxin and reduced transcription of ripening-related genes. AoB PLANTS 5:pls47. doi: 10.1093/aobpla/pls047 es_ES
dc.description.references Seo M, Jikumaru Y, Kamiya Y (2011) Profiling of hormones and related metabolites in seed dormancy and germination studies. Methods Mol Biol 773:99–111 es_ES
dc.description.references Singh R, Singh P, Pathak N, Singh VK, Dwivedi UN (2007) Modulation of mango ripening by chemicals: physiological and biochemical aspects. Plant Growth Regul 53:137–145 es_ES
dc.description.references Sisler EC, Blankenship SM (1993) Diazocyclopentadiene, a light sensitive reagent for the ethylene receptor. Plant Growth Regul 12:125–132 es_ES
dc.description.references Sisler EC, Serek M, Dupille E (1996) Comparison of cyclopropene, 1-methylcyclopropene and 3,3-dimethylcyclopropene as ethylene antagonists in plants. Plant Growth Regul 18:169–174 es_ES
dc.description.references Southwick SM, Weis KG, Yeager JT (1995) Controlling cropping in ‘Loadel’ cling peach using gibberellin: effects on flower density, fruit distribution, fruit firmness, fruit thinning, and yield. J Am Soc Hortic Sci 120:1087–1095 es_ES
dc.description.references Trebitsch T, Goldschmidt EE, Riov J (1993) Ethylene induces de novo synthesis of chlorophyllase, a chlorophyll degrading enzyme, in Citrus fruit peel. Proc Natl Acad Sci 90:9441–9445 es_ES
dc.description.references Undurraga P, Olaeta JA (2003) Effect of ethephon (2-chloro ethylphosphonic acid) applied to the trees on fruit ripening in ‘Golden Niugget’ loquat (Eriobotrya japonica Lindl.). Options Mediterr 58:123–128 es_ES
dc.description.references Undurraga P, Olaeta JA, Cancino C (2011) Ethylene, enzymatic and respiratory patterns evolution in loquat (Eriobotrya japonica (Thumb.) Lindl.) cv. Golden Nugget in the last four sequential stages of maturation. Chil J Agric Res 71:530–535 es_ES
dc.description.references Yamane M, Abe D, Yasui S, Yokotani N, Kimata W, Ushijima K, Nakano R, Rubo Y, Inaba A (2007) Differential expression of ethylene biosynthetic genes in climacteric and non-climacteric Chinese pear fruit. Postharvest Biol Technol 44:220–227 es_ES
dc.description.references Yang SF (1981) Biosynthesis of ethylene and its regulation. In: Friend J, Rhodes MJC (eds) Recent advances in the biochemistry of fruit and vegetables. Academic, London, pp 89–106 es_ES
dc.description.references Yang SF, Hoffman NE (1984) EWthylene biosynthesis and its regulation in higher plants. Ann Rev Plant Physiol 35:155–189 es_ES
dc.description.references Zaharah SS, Singh Z, Symons GM, Reid JB (2012) Role of brassinosteroids, ethylene, abscisic acid, and infloe-3-acetic acid in mango fruit ripening. J Plant Growth Regul 31:363–372 es_ES
dc.description.references Zhang M, Yuan B, Leng P (2009) The role of ABA in triggering ethylene biosynthesis and ripening of tomato fruit. J Exp Bot 60:1579–1588 es_ES
dc.description.references Zheng YH, Xi YF, Ying TJ (1993) Studies on postharvest respiration and ethylene production of loquat fruits. Acta Hortic Sin 2:111–115 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem