- -

Estimating costs in the EOQ formula

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Estimating costs in the EOQ formula

Show full item record

Vidal-Carreras, PI.; García Sabater, JP.; Valero-Herrero, M.; Santandreu Mascarell, C. (2014). Estimating costs in the EOQ formula. Lecture Notes in Management and Industrial Engineering. 4(1):175-182. doi:10.1007/978-3-319-04705-8_20

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/93291

Files in this item

Item Metadata

Title: Estimating costs in the EOQ formula
Author: Vidal-Carreras, Pilar I. García Sabater, José Pedro Valero-Herrero, Maria Santandreu Mascarell, Cristina
UPV Unit: Universitat Politècnica de València. Departamento de Organización de Empresas - Departament d'Organització d'Empreses
Issued date:
Abstract:
[EN] The EOQ formula (Harris, Fact Mag Manage 10(2):135-6-152, 1913) provides a balance between setup costs and holding costs in the system. This formula has been widely developed in the literature. However in the industrial ...[+]
Subjects: EQ , Inventory Management , Setup Cost
Copyrigths: Reserva de todos los derechos
Source:
Lecture Notes in Management and Industrial Engineering. (issn: 2198-0772 )
DOI: 10.1007/978-3-319-04705-8_20
Publisher:
Springer
Publisher version: http://doi.org/10.1007/978-3-319-04705-8_20
Thanks:
The work described in this paper has been supported by Project “CORSARI MAGIC DPI2010-18243” from the Spanish Ministry of Science and Innovation.
Type: Artículo

References

Bomberger EE (1966) A dynamic programming approach to a lot size scheduling problem. Manage Sci 12(11):778

Brander P, Segerstedt A (2009) Economic lot scheduling problems incorporating a cost of using the production facility. Int J Prod Res 47(13):3611–3624

Goyal SK (1985) Economic order quantity under conditions of permissible delay in payments. J Oper Res Soc 44:785–795 [+]
Bomberger EE (1966) A dynamic programming approach to a lot size scheduling problem. Manage Sci 12(11):778

Brander P, Segerstedt A (2009) Economic lot scheduling problems incorporating a cost of using the production facility. Int J Prod Res 47(13):3611–3624

Goyal SK (1985) Economic order quantity under conditions of permissible delay in payments. J Oper Res Soc 44:785–795

Harris FW (1913) How many parts to make an once. Fact Mag Manage 10(2):135-6-152

Huang YF (2007) Economic order quantity under conditionally permissible delay in payments. Eur J Oper Res 176(2):911–924

Jaggi CK, Goyal SK, Goel SK (2008) Retailer’s optimal replenishment decisions with credit-linked demand under permissible delay in payments. Eur J Oper Res 190(1):130–135

Lee WJ (1993) Determining order quantity and selling price by geometric programming: optimal solution, bounds, and sensitivity. Decision Sci 24(1):76–87

Meyer B (2004) Value-adding logistics for a world assembly line. Bonifatius Verlag, Paderborn

Mo J, Mi F, Zhou F, Pan H (2009) A note on an EOQ model with stock and price sensitive demand. Math Comput Model 49(9):2029–2036

Sadjadi SJ, Oroujee M, Aryanezhad MB (2005) Optimal production and marketing planning. Comput Optim Appl 30(2):195–203

Shirodkar S, Kempf K (2006) Supply chain collaboration through shared capacity models. Interfaces 36(5):420–432

Taleizadeh AA, Pentico DW, Saeed Jabalameli M, Aryanezhad M (2013) An EOQ model with partial delayed payment and partial backordering. Omega 41(2):354–368

Vidal-Carreras PI, Garcia-Sabater JP, Coronado-Hernandez JR (2012) Economic lot scheduling with deliberated and controlled coproduction. Eur J Oper Res 219(2):396–404

Whitin TM (1955) Inventory control and price theory. Manage Sci 2(1):61–68

You PS, Chen TC (2007) Dynamic pricing of seasonal goods with spot and forward purchase demands. Comput Math Appl 54(4):490–498

[-]

This item appears in the following Collection(s)

Show full item record