- -

Microstructure and Mechanical Properties of Ti-Mo-Zr-Cr Biomedical Alloys by Powder Metallurgy

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Microstructure and Mechanical Properties of Ti-Mo-Zr-Cr Biomedical Alloys by Powder Metallurgy

Show simple item record

Files in this item

dc.contributor.author Elshalakany, Abou Bakr es_ES
dc.contributor.author Ali, Shady es_ES
dc.contributor.author Amigó Mata, A. es_ES
dc.contributor.author Eessaa, Ashraf K. es_ES
dc.contributor.author Mohan, Prakash es_ES
dc.contributor.author Osman, T.A. es_ES
dc.contributor.author Amigó, Vicente es_ES
dc.date.accessioned 2017-12-21T14:05:25Z
dc.date.available 2017-12-21T14:05:25Z
dc.date.issued 2017 es_ES
dc.identifier.issn 1059-9495 es_ES
dc.identifier.uri http://hdl.handle.net/10251/93307
dc.description.abstract [EN] Titanium and its alloys have been widely used as biometals due to their excellent biocompatibility, corrosion resistance and moderate mechanical properties. Ti-15Mo-6Zr-based alloys and a series of Ti-15Mo-6Zr-xCr (x = 1, 2, 3, 4 wt.%) alloys were designed and fabricated by powder metallurgy for the first time to develop novel biomedical materials. The microstructure, internal porosity and mechanical properties of the sintered Ti-15Mo-6Zr and Ti-15Mo-6Zr-xCr alloys were investigated using scanning electronic microscopy (SEM) and bending and compression tests. The experimental results indicated that the microstructure and mechanical properties of these alloys changed as different Cr levels were added. The addition of small Cr levels further increased the β-phase stability, improving the properties of the Ti-15Mo-6Zr-xCr alloy. However, all of the alloys had good ductility, and the Ti-15Mo-6Zr-2Cr alloy had lower bending and compression moduli (31 and 23 GPa, respectively) than the Ti-15Mo-6Zr-based alloys (40 and 36 GPa, respectively). Moreover, the Ti-15Mo-6Zr-2Cr alloys exhibited higher bending and compression strength/modulus ratios, which were as large as 48.4 and 52.2, respectively; these were higher than those of the Ti-15Mo-6Zr-based alloy (41.3 and 33.6, respectively). In the search for a better implant material, β phase Ti-15Mo-6Zr-2Cr, with its low modulus, ductile properties and reasonably high strength, is a promising candidate. es_ES
dc.description.sponsorship The authors thank the Ministry of Economy and Competitiveness for financially supporting the research project MAT2014-53764-C3-1-R and the European Commission through the Erasmus Mundus scholarship program WELCOME. The European Commission via FEDER funds allowed for the purchase of equipment for research and Microscopy Service of the Polytechnic University of Valencia.
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation info:eu-repo/grantAgreement/MINECO//MAT2014-53764-C3-1-R/ES/ESTUDIO DEL COMPORTAMIENTO TRIBO-ELECTROQUIMICO EN NUEVAS ALEACIONES DE TITANIO DE BAJO MODULO Y SU MODIFICACION SUPERFICIAL PARA APLICACIONES BIOMEDICAS./ es_ES
dc.relation.ispartof Journal of Materials Engineering and Performance es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Implant material es_ES
dc.subject Microstructure es_ES
dc.subject Mechanical properties es_ES
dc.subject Powder metallurgy es_ES
dc.subject Titanium alloys es_ES
dc.subject Electron Microscopy Service of the UPV
dc.subject.classification CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA es_ES
dc.title Microstructure and Mechanical Properties of Ti-Mo-Zr-Cr Biomedical Alloys by Powder Metallurgy es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11665-017-2531-z es_ES
dc.rights.accessRights Abierto es_ES
dc.date.embargoEndDate 2018-03-30 es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.description.bibliographicCitation Elshalakany, AB.; Ali, S.; Amigó Mata, A.; Eessaa, AK.; Mohan, P.; Osman, T.; Amigó, V. (2017). Microstructure and Mechanical Properties of Ti-Mo-Zr-Cr Biomedical Alloys by Powder Metallurgy. Journal of Materials Engineering and Performance. 26(3):1262-1271. doi:10.1007/s11665-017-2531-z es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1007/s11665-017-2531-z es_ES
dc.description.upvformatpinicio 1262 es_ES
dc.description.upvformatpfin 1271 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 26 es_ES
dc.description.issue 3 es_ES
dc.relation.pasarela S\326384 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder European Commission
dc.contributor.funder European Regional Development Fund
dc.description.references M. Geetha, A.K. Singh, R. Asokamani, and A.K. Gogia, Ti Based Biomaterials, the Ultimate Choice for Orthopaedic Implants—A Review, Prog. Mater Sci., 2009, 54, p 397–425 es_ES
dc.description.references M. Ahmed, D.G. Savvakin, O.M. Ivasishin, and E.V. Pereloma, The Effect of Ageing on Microstructure and Mechanical Properties of Powder Ti-5Al-5Mo-5V-1Cr-1Fe Alloy, Mater. Sci. Eng., 2014, A605, p 89–97 es_ES
dc.description.references M. Niinomi, Mechanical Biocompatibilities of Titanium Alloys for Biomedical Applications, J. Mech. Behav. Biomed. Mater., 2008, 1(30–4), p 2 es_ES
dc.description.references M.P. Licausi, A. IgualMun, and V.A. Borrás, Influence of the Fabrication Process and Fluoride Content on the Tribocorrosion Behaviour of Ti6Al4V Biomedical Alloy in Artificial Saliva, J. Mech. Behav. Biomed. Mater., 2013, 20(2013), p 137–148 es_ES
dc.description.references I. Cvijovic-Alagic, N. Gubeljak, M. Rakin, Z. Cvijovic, and K. Geric, Microstructural Morphology Effects on Fracture Resistance and Crack Tip Strain Distribution in Ti-6Al-4V Alloy for Orthopedic Implants, Mater. Des., 2014, 53, p 870–880 es_ES
dc.description.references Y.C. Chen, J.H. Chern Lin, and C.P. Ju, Effects of Post-aging Cooling Condition on Structure and Tensile Properties of Aged Ti-7.5Mo Alloy, Mater. Des., 2014, 54, p 515–519 es_ES
dc.description.references E.P. Lautenschlager and P. Monaghan, Titanium and Titanium Alloys as Dental Materials, Int. Dent. J., 1993, 43, p 245–253 es_ES
dc.description.references M. Long and H.J. Rack, Titanium Alloys in Total Joint Replacement—A Materials Science Perspective, Biomaterials, 1998, 19, p 1621–1639 es_ES
dc.description.references M. Long and H.J. Rack, Titanium Alloys in Total Joint Replacement a Materials Science Perspective, Biomaterials, 1998, 19, p 1621–1639 es_ES
dc.description.references M. Niinomi, Mechanical Properties of Biomedical Titanium Alloys, Mater. Sci. Eng., A, 1998, 243, p 231–236 es_ES
dc.description.references E. Cheal, M. Spector, and W. Hayes, Role of Loads and Prosthesis Material Properties on the Mechanics of the Proximal Femur After Total Hip Arthroplasty, J. Orthop. Res., 1992, 10, p 405–422 es_ES
dc.description.references J. Fan, M. Lu, H. Cheng, J. Tian, and B. Huang, Effect of Alloying Elements Ti, Zr on the Property and Microstructure of Molybdenum, Int. J. Refract. Met. Hard Mater., 2009, 27, p 78–82 es_ES
dc.description.references W.F. Ho, S.C. Wu, S.K. Hsu, Y.C. Li, and H.C. Hsu, Effects of Molybdenum Content on the Structure and Mechanical Properties of as-Cast Ti-10Zr-Based Alloys for Biomedical Applications, Mater. Sci. Eng., C, 2012, 32, p 517–522 es_ES
dc.description.references W.F.A. Ho, Comparison of Tensile Properties and Corrosion Behavior of Cast Ti-7.5Mo with c.p. Ti, Ti-15Mo and Ti-6Al-4V Alloys, J. Alloys Compd., 2008, 464, p 580–583 es_ES
dc.description.references Y.L. Zhou and D.M. Luo, Corrosion Behavior of Ti-Mo Alloys Cold Rolled and Heat Treated, J. Alloys Compd., 2011, 509, p 6267–6272 es_ES
dc.description.references N.T.C. Oliveira and A.C. Guastaldi, Electrochemical Stability and Corrosion Resistance of Ti-Mo Alloys for Biomedical Applications, Acta Biomater., 2009, 5, p 339–405 es_ES
dc.description.references Y. Chen, L. Xu, Z. Liu, F. Kong, and Z. Chen, Microstructures and Properties of Titanium Alloys Ti-Mo for Dental Use, Trans. Nonferrous Met. Soc. China, 2006, 16, p 824–828 es_ES
dc.description.references W.-F. Ho, S.-C. Wu, H.-W. Wanga, and H.-C. Hsu, Effects of Cr Addition on Grindability of Cast Ti-10Zr Based Alloys, Mater. Chem. Phys., 2010, 121, p 465–471 es_ES
dc.description.references M.J. Donachie, Titanium: A Technical Guide, 2nd ed., ASM International, Metals Park, 2000 es_ES
dc.description.references R.G. Craig, Restorative Dental Materials, 9th ed., CV Mosby, St. Louis, 1993 es_ES
dc.description.references H.C. Hsu, S.C. Wu, S.K. Hsu, T.F. Lin, and W.F. Ho, Structure and Mechanical Properties Of as-Cast Ti-5Nb-xCr Alloys, Mater. Des., 2013, 51, p 268–273 es_ES
dc.description.references H.-C. Hsu, S.-C. Wu, S.-K. Hsu, C.-T. Li, and W.-F. Ho, Effects of Chromium Addition on Structure and Mechanical Properties of Ti-5Mo Alloy, Mater. Des., 2015, 65, p 700–706 es_ES
dc.description.references J. Syarif, T.N. Rohmannudin, M.Z. Omar, Z. Sajuri, and S. Harjanto, Stability of the Beta Phase in Ti-Mo-Cr Alloy Fabricated by Powder Metallurgy, J. Min. Metall. Sect. B Metall., 2013, 49(3), p 285–292 es_ES
dc.description.references J. Syarif, E. Kurniawan, M.R. Rasani, Z. Sajuri, M.Z. Omar, and S. Harjanto, Influence of Oxygen on Microstructures of Ti-Mo-Cr Alloy, Adv. Mater. Res., 2014, 896, p 613–616 es_ES
dc.description.references E. Delvat, D.M. Gordin, T. Gloriant, J.L. Duval, and M.D. Nagel, Microstructure, Mechanical Properties and Cytocompatibility of Stable Beta Ti-Mo-Ta Sintered Alloys, J. Mech. Behav. Biomed. Mater., 2008, 1, p 345–351 es_ES
dc.description.references P. Wang, Y. Feng, F. Liu, and L.S. Guan, Microstructure and Mechanical Properties of Ti-Zr-Cr Biomedical Alloys, Mater. Sci. Eng., C, 2015, 51, p 148–152 es_ES
dc.description.references W.-F. Ho, S.-C. Wu, H.-H. Chang, and H.-C. Hsu, Structure and Mechanical Properties of Ti-5Cr Based Alloy with Mo Addition, Mater. Sci. Eng., C, 2010, 30, p 904–909 es_ES


This item appears in the following Collection(s)

Show simple item record