Mostrar el registro sencillo del ítem
dc.contributor.author | Elshalakany, Abou Bakr | es_ES |
dc.contributor.author | Ali, Shady | es_ES |
dc.contributor.author | Amigó Mata, A. | es_ES |
dc.contributor.author | Eessaa, Ashraf K. | es_ES |
dc.contributor.author | Mohan, Prakash | es_ES |
dc.contributor.author | Osman, T.A. | es_ES |
dc.contributor.author | Amigó, Vicente | es_ES |
dc.date.accessioned | 2017-12-21T14:05:25Z | |
dc.date.available | 2017-12-21T14:05:25Z | |
dc.date.issued | 2017 | es_ES |
dc.identifier.issn | 1059-9495 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/93307 | |
dc.description.abstract | [EN] Titanium and its alloys have been widely used as biometals due to their excellent biocompatibility, corrosion resistance and moderate mechanical properties. Ti-15Mo-6Zr-based alloys and a series of Ti-15Mo-6Zr-xCr (x = 1, 2, 3, 4 wt.%) alloys were designed and fabricated by powder metallurgy for the first time to develop novel biomedical materials. The microstructure, internal porosity and mechanical properties of the sintered Ti-15Mo-6Zr and Ti-15Mo-6Zr-xCr alloys were investigated using scanning electronic microscopy (SEM) and bending and compression tests. The experimental results indicated that the microstructure and mechanical properties of these alloys changed as different Cr levels were added. The addition of small Cr levels further increased the β-phase stability, improving the properties of the Ti-15Mo-6Zr-xCr alloy. However, all of the alloys had good ductility, and the Ti-15Mo-6Zr-2Cr alloy had lower bending and compression moduli (31 and 23 GPa, respectively) than the Ti-15Mo-6Zr-based alloys (40 and 36 GPa, respectively). Moreover, the Ti-15Mo-6Zr-2Cr alloys exhibited higher bending and compression strength/modulus ratios, which were as large as 48.4 and 52.2, respectively; these were higher than those of the Ti-15Mo-6Zr-based alloy (41.3 and 33.6, respectively). In the search for a better implant material, β phase Ti-15Mo-6Zr-2Cr, with its low modulus, ductile properties and reasonably high strength, is a promising candidate. | es_ES |
dc.description.sponsorship | The authors thank the Ministry of Economy and Competitiveness for financially supporting the research project MAT2014-53764-C3-1-R and the European Commission through the Erasmus Mundus scholarship program WELCOME. The European Commission via FEDER funds allowed for the purchase of equipment for research and Microscopy Service of the Polytechnic University of Valencia. | |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Journal of Materials Engineering and Performance | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Implant material | es_ES |
dc.subject | Microstructure | es_ES |
dc.subject | Mechanical properties | es_ES |
dc.subject | Powder metallurgy | es_ES |
dc.subject | Titanium alloys | es_ES |
dc.subject | Electron Microscopy Service of the UPV | |
dc.subject.classification | CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA | es_ES |
dc.title | Microstructure and Mechanical Properties of Ti-Mo-Zr-Cr Biomedical Alloys by Powder Metallurgy | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s11665-017-2531-z | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MAT2014-53764-C3-1-R/ES/ESTUDIO DEL COMPORTAMIENTO TRIBO-ELECTROQUIMICO EN NUEVAS ALEACIONES DE TITANIO DE BAJO MODULO Y SU MODIFICACION SUPERFICIAL PARA APLICACIONES BIOMEDICAS./ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.date.embargoEndDate | 2018-03-30 | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials | es_ES |
dc.description.bibliographicCitation | Elshalakany, AB.; Ali, S.; Amigó Mata, A.; Eessaa, AK.; Mohan, P.; Osman, T.; Amigó, V. (2017). Microstructure and Mechanical Properties of Ti-Mo-Zr-Cr Biomedical Alloys by Powder Metallurgy. Journal of Materials Engineering and Performance. 26(3):1262-1271. doi:10.1007/s11665-017-2531-z | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://doi.org/10.1007/s11665-017-2531-z | es_ES |
dc.description.upvformatpinicio | 1262 | es_ES |
dc.description.upvformatpfin | 1271 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 26 | es_ES |
dc.description.issue | 3 | es_ES |
dc.relation.pasarela | S\326384 | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | European Commission | |
dc.contributor.funder | European Regional Development Fund | |
dc.description.references | M. Geetha, A.K. Singh, R. Asokamani, and A.K. Gogia, Ti Based Biomaterials, the Ultimate Choice for Orthopaedic Implants—A Review, Prog. Mater Sci., 2009, 54, p 397–425 | es_ES |
dc.description.references | M. Ahmed, D.G. Savvakin, O.M. Ivasishin, and E.V. Pereloma, The Effect of Ageing on Microstructure and Mechanical Properties of Powder Ti-5Al-5Mo-5V-1Cr-1Fe Alloy, Mater. Sci. Eng., 2014, A605, p 89–97 | es_ES |
dc.description.references | M. Niinomi, Mechanical Biocompatibilities of Titanium Alloys for Biomedical Applications, J. Mech. Behav. Biomed. Mater., 2008, 1(30–4), p 2 | es_ES |
dc.description.references | M.P. Licausi, A. IgualMun, and V.A. Borrás, Influence of the Fabrication Process and Fluoride Content on the Tribocorrosion Behaviour of Ti6Al4V Biomedical Alloy in Artificial Saliva, J. Mech. Behav. Biomed. Mater., 2013, 20(2013), p 137–148 | es_ES |
dc.description.references | I. Cvijovic-Alagic, N. Gubeljak, M. Rakin, Z. Cvijovic, and K. Geric, Microstructural Morphology Effects on Fracture Resistance and Crack Tip Strain Distribution in Ti-6Al-4V Alloy for Orthopedic Implants, Mater. Des., 2014, 53, p 870–880 | es_ES |
dc.description.references | Y.C. Chen, J.H. Chern Lin, and C.P. Ju, Effects of Post-aging Cooling Condition on Structure and Tensile Properties of Aged Ti-7.5Mo Alloy, Mater. Des., 2014, 54, p 515–519 | es_ES |
dc.description.references | E.P. Lautenschlager and P. Monaghan, Titanium and Titanium Alloys as Dental Materials, Int. Dent. J., 1993, 43, p 245–253 | es_ES |
dc.description.references | M. Long and H.J. Rack, Titanium Alloys in Total Joint Replacement—A Materials Science Perspective, Biomaterials, 1998, 19, p 1621–1639 | es_ES |
dc.description.references | M. Long and H.J. Rack, Titanium Alloys in Total Joint Replacement a Materials Science Perspective, Biomaterials, 1998, 19, p 1621–1639 | es_ES |
dc.description.references | M. Niinomi, Mechanical Properties of Biomedical Titanium Alloys, Mater. Sci. Eng., A, 1998, 243, p 231–236 | es_ES |
dc.description.references | E. Cheal, M. Spector, and W. Hayes, Role of Loads and Prosthesis Material Properties on the Mechanics of the Proximal Femur After Total Hip Arthroplasty, J. Orthop. Res., 1992, 10, p 405–422 | es_ES |
dc.description.references | J. Fan, M. Lu, H. Cheng, J. Tian, and B. Huang, Effect of Alloying Elements Ti, Zr on the Property and Microstructure of Molybdenum, Int. J. Refract. Met. Hard Mater., 2009, 27, p 78–82 | es_ES |
dc.description.references | W.F. Ho, S.C. Wu, S.K. Hsu, Y.C. Li, and H.C. Hsu, Effects of Molybdenum Content on the Structure and Mechanical Properties of as-Cast Ti-10Zr-Based Alloys for Biomedical Applications, Mater. Sci. Eng., C, 2012, 32, p 517–522 | es_ES |
dc.description.references | W.F.A. Ho, Comparison of Tensile Properties and Corrosion Behavior of Cast Ti-7.5Mo with c.p. Ti, Ti-15Mo and Ti-6Al-4V Alloys, J. Alloys Compd., 2008, 464, p 580–583 | es_ES |
dc.description.references | Y.L. Zhou and D.M. Luo, Corrosion Behavior of Ti-Mo Alloys Cold Rolled and Heat Treated, J. Alloys Compd., 2011, 509, p 6267–6272 | es_ES |
dc.description.references | N.T.C. Oliveira and A.C. Guastaldi, Electrochemical Stability and Corrosion Resistance of Ti-Mo Alloys for Biomedical Applications, Acta Biomater., 2009, 5, p 339–405 | es_ES |
dc.description.references | Y. Chen, L. Xu, Z. Liu, F. Kong, and Z. Chen, Microstructures and Properties of Titanium Alloys Ti-Mo for Dental Use, Trans. Nonferrous Met. Soc. China, 2006, 16, p 824–828 | es_ES |
dc.description.references | W.-F. Ho, S.-C. Wu, H.-W. Wanga, and H.-C. Hsu, Effects of Cr Addition on Grindability of Cast Ti-10Zr Based Alloys, Mater. Chem. Phys., 2010, 121, p 465–471 | es_ES |
dc.description.references | M.J. Donachie, Titanium: A Technical Guide, 2nd ed., ASM International, Metals Park, 2000 | es_ES |
dc.description.references | R.G. Craig, Restorative Dental Materials, 9th ed., CV Mosby, St. Louis, 1993 | es_ES |
dc.description.references | H.C. Hsu, S.C. Wu, S.K. Hsu, T.F. Lin, and W.F. Ho, Structure and Mechanical Properties Of as-Cast Ti-5Nb-xCr Alloys, Mater. Des., 2013, 51, p 268–273 | es_ES |
dc.description.references | H.-C. Hsu, S.-C. Wu, S.-K. Hsu, C.-T. Li, and W.-F. Ho, Effects of Chromium Addition on Structure and Mechanical Properties of Ti-5Mo Alloy, Mater. Des., 2015, 65, p 700–706 | es_ES |
dc.description.references | J. Syarif, T.N. Rohmannudin, M.Z. Omar, Z. Sajuri, and S. Harjanto, Stability of the Beta Phase in Ti-Mo-Cr Alloy Fabricated by Powder Metallurgy, J. Min. Metall. Sect. B Metall., 2013, 49(3), p 285–292 | es_ES |
dc.description.references | J. Syarif, E. Kurniawan, M.R. Rasani, Z. Sajuri, M.Z. Omar, and S. Harjanto, Influence of Oxygen on Microstructures of Ti-Mo-Cr Alloy, Adv. Mater. Res., 2014, 896, p 613–616 | es_ES |
dc.description.references | E. Delvat, D.M. Gordin, T. Gloriant, J.L. Duval, and M.D. Nagel, Microstructure, Mechanical Properties and Cytocompatibility of Stable Beta Ti-Mo-Ta Sintered Alloys, J. Mech. Behav. Biomed. Mater., 2008, 1, p 345–351 | es_ES |
dc.description.references | P. Wang, Y. Feng, F. Liu, and L.S. Guan, Microstructure and Mechanical Properties of Ti-Zr-Cr Biomedical Alloys, Mater. Sci. Eng., C, 2015, 51, p 148–152 | es_ES |
dc.description.references | W.-F. Ho, S.-C. Wu, H.-H. Chang, and H.-C. Hsu, Structure and Mechanical Properties of Ti-5Cr Based Alloy with Mo Addition, Mater. Sci. Eng., C, 2010, 30, p 904–909 | es_ES |