- -

The use of a Multi-label Classification Framework for the Detection of Broken Bars and Mixed Eccentricity Faults based on the Start-up Transient

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

The use of a Multi-label Classification Framework for the Detection of Broken Bars and Mixed Eccentricity Faults based on the Start-up Transient

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Georgoulas, George es_ES
dc.contributor.author Climente Alarcón, Vicente es_ES
dc.contributor.author Antonino-Daviu, J. es_ES
dc.contributor.author Tsoumas, Ioannis P. es_ES
dc.contributor.author Stylios, Chrysostomos D. es_ES
dc.contributor.author Arkkio, Antero es_ES
dc.contributor.author Nikolakopoulos, George es_ES
dc.date.accessioned 2017-12-22T07:23:01Z
dc.date.available 2017-12-22T07:23:01Z
dc.date.issued 2016 es_ES
dc.identifier.issn 1551-3203 es_ES
dc.identifier.uri http://hdl.handle.net/10251/93328
dc.description.abstract [EN] In this article a data driven approach for the classification of simultaneously occurring faults in an induction motor is presented. The problem is treated as a multi-label classification problem with each label corresponding to one specific fault. The faulty conditions examined, include the existence of a broken bar fault and the presence of mixed eccentricity with various degrees of static and dynamic eccentricity, while three "problem transformation" methods are tested and compared. For the feature extraction stage, the startup current is exploited using two well-known time-frequency (scale) transformations. This is the first time that a multi-label framework is used for the diagnosis of co-occurring fault conditions using information coming from the start-up current of induction motors. The efficiency of the proposed approach is validated using simulation data with promising results irrespective of the selected time-frequency transformation. es_ES
dc.description.sponsorship This work was supported in part by the Spanish MINECO and FEDER program in the framework of the "Proyectos I + D del Subprograma de Generacion de Conocimiento, Programa Estatal de Fomento de la Investigacion Cientifica y Tecnica de Excelencia" under Grant DPI2014-52842-P and in part by the Horizon 2020 Framework program DISIRE under the Grant Agreement 636834.
dc.language Inglés es_ES
dc.publisher Institute of Electrical and Electronics Engineers es_ES
dc.relation.ispartof IEEE Transactions on Industrial Informatics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Time-frequency analysis es_ES
dc.subject Bars es_ES
dc.subject Transient analysis es_ES
dc.subject Induction motors es_ES
dc.subject Continuous wavelet transforms es_ES
dc.subject Fault detection es_ES
dc.subject Informatics es_ES
dc.subject.classification INGENIERIA ELECTRICA es_ES
dc.title The use of a Multi-label Classification Framework for the Detection of Broken Bars and Mixed Eccentricity Faults based on the Start-up Transient es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1109/TII.2016.2637169 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//DPI2014-52842-P/ES/COMBINACION DE TECNICAS NO INVASIVAS DE MONITORIZACION DEL ESTADO PARA EL DESARROLLO DE MOTORES ELECTRICOS INTELIGENTES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/636834/EU/Integrated Process Control based on Distributed In-Situ Sensors into Raw Material and Energy Feedstock/
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Eléctrica - Departament d'Enginyeria Elèctrica es_ES
dc.description.bibliographicCitation Georgoulas, G.; Climente Alarcón, V.; Antonino-Daviu, J.; Tsoumas, IP.; Stylios, CD.; Arkkio, A.; Nikolakopoulos, G. (2016). The use of a Multi-label Classification Framework for the Detection of Broken Bars and Mixed Eccentricity Faults based on the Start-up Transient. IEEE Transactions on Industrial Informatics. 13(2):625-634. https://doi.org/10.1109/TII.2016.2637169 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1109/TII.2016.2637169 es_ES
dc.description.upvformatpinicio 625 es_ES
dc.description.upvformatpfin 634 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 13 es_ES
dc.description.issue 2 es_ES
dc.relation.pasarela S\322207 es_ES
dc.contributor.funder Ministerio de Economía, Industria y Competitividad es_ES
dc.contributor.funder European Commission


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem