Antonino-Daviu, J.; Aviyente, S.; Strangas, EG.; Riera-Guasp, M. (2013). Scale Invariant Feature Extraction Algorithm for the Automatic Diagnosis of Rotor Asymmetries in Induction Motors. IEEE Transactions on Industrial Informatics. 9(1):100-108. https://doi.org/10.1109/TII.2012.2198659
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/93476
Title:
|
Scale Invariant Feature Extraction Algorithm for the Automatic Diagnosis of Rotor Asymmetries in Induction Motors
|
Author:
|
Antonino-Daviu, J.
Aviyente, Selin
Strangas, Elias G.
Riera-Guasp, Martín
|
UPV Unit:
|
Universitat Politècnica de València. Departamento de Ingeniería Eléctrica - Departament d'Enginyeria Elèctrica
|
Issued date:
|
|
Abstract:
|
[EN] The development of portable devices that make the reliable diagnosis of faults in electric motors possible has become a challenge for many researchers and maintenance enterprises. These machines intervene in a huge ...[+]
[EN] The development of portable devices that make the reliable diagnosis of faults in electric motors possible has become a challenge for many researchers and maintenance enterprises. These machines intervene in a huge amount of processes and applications and their eventual failure may imply important costs in terms of time and money. However, the aforementioned issue remains unsolved because most of the developed fault diagnosis techniques rely on the user expertise, since they are based on a qualitative interpretation of the results. This complicates the implementation of these methodologies in condition monitoring systems or devices. The objective of this paper is to propose an integral methodology that is able to diagnose the presence of rotor bar failures in an automatic way. The proposed algorithm combines the Discrete Wavelet Transform with the scale transform for feature extraction and correlation coefficient for pattern recognition. The algorithm is applied to both small and large motors operating in a wide range of conditions. The results illustrate the validity and generality of the approach for automatic condition monitoring of electric motors.
[-]
|
Subjects:
|
AC machine
,
Condition monitoring
,
Correlation
,
Discrete wavelet transforms
,
Fault diagnosis
,
Feature extraction
,
Induction motor
,
Motor spectrum analysis
,
Pattern recognition
,
Transient analysis
|
Copyrigths:
|
Cerrado |
Source:
|
IEEE Transactions on Industrial Informatics. (issn:
1551-3203
)
|
DOI:
|
10.1109/TII.2012.2198659
|
Publisher:
|
Institute of Electrical and Electronics Engineers
|
Publisher version:
|
https://doi.org/10.1109/TII.2012.2198659
|
Project ID:
|
info:eu-repo/grantAgreement/MICINN//DPI2008-06583/ES/DESARROLLO DE TECNICAS DE DIAGNOSTICO DE AVERIAS ELECTROMECANICAS EN MAQUINAS ELECTRICAS DE INDUCCION BASADAS EN LA APLICACION DE METODOS AVANZADOS DE ANALISIS DE SEÑAL/
|
Thanks:
|
This work was supported in part by the Ministerio de Educacion, Modalidad B del subprograma de estancias de movilidad de profesores e investigadores espanoles en centros extranjeros, Estancias de movilidad en el extranjero ...[+]
This work was supported in part by the Ministerio de Educacion, Modalidad B del subprograma de estancias de movilidad de profesores e investigadores espanoles en centros extranjeros, Estancias de movilidad en el extranjero Jose Castillejo para jovenes doctores and by the Spanish Ministerio de Educacion y Ciencia in the framework of the Programa Nacional de proyectos de Investigacion Fundamental, project reference DPI2008-06583/DPI. Personal use of this material is permitted. However, permission to use this material for any other purposes must be obtained from the IEEE by sending a request to pubs-permissions@ieee.org. Paper no. TII-11-348. Asterisk indicates corresponding author.
[-]
|
Type:
|
Artículo
|