- -

Transcriptome analysis and molecular marker discovery in Solanum incanum and S. aethiopicum, two close relatives of the common eggplant (Solanum melongena) with interest for breeding

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Transcriptome analysis and molecular marker discovery in Solanum incanum and S. aethiopicum, two close relatives of the common eggplant (Solanum melongena) with interest for breeding

Show simple item record

Files in this item

dc.contributor.author Gramazio, Pietro es_ES
dc.contributor.author Blanca Postigo, José Miguel es_ES
dc.contributor.author Ziarsolo Areitioaurtena, Pello es_ES
dc.contributor.author Herraiz García, Francisco Javier es_ES
dc.contributor.author Plazas Ávila, María de la O es_ES
dc.contributor.author Prohens Tomás, Jaime es_ES
dc.contributor.author Vilanova Navarro, Santiago es_ES
dc.date.accessioned 2018-01-02T09:41:55Z
dc.date.available 2018-01-02T09:41:55Z
dc.date.issued 2016 es_ES
dc.identifier.issn 1471-2164 es_ES
dc.identifier.uri http://hdl.handle.net/10251/93708
dc.description.abstract [EN] Background: Solanum incanum is a close wild relative of S. melongena with high contents of bioactive phenolics and drought tolerance. S. aethiopicum is a cultivated African eggplant cross-compatible with S. melongena. Despite their great interest in S. melongena breeding programs, the genomic resources for these species are scarce. Results: RNA-Seq was performed with NGS from pooled RNA of young leaf, floral bud and young fruit tissues, generating more than one hundred millions raw reads per species. The transcriptomes were assembled in 83,905 unigenes for S. incanum and in 87,084 unigenes for S. aethiopicum with an average length of 696 and 722 bp, respectively. The unigenes were structurally and functionally annotated based on comparison with public databases by using bioinformatic tools. The single nucleotide variant calling analysis (SNPs and INDELs) was performed by mapping our S. incanum and S. aethiopicum reads, as well as reads from S. melongena and S. torvum available on NCBI database (National Center for Biotechnology Information), against the eggplant genome. Both intraspecific and interspecific polymorphisms were identified and subsets of molecular markers were created for all species combinations. 36 SNVs were selected for validation in the S. incanum and S. aethiopicum accessions and 96 % were correctly amplified confirming the polymorphisms. In addition, 976 and 1,278 SSRs were identified in S. incanum and S. aethiopicum transcriptomes respectively, and a set of them were validated. Conclusions: This work provides a broad insight into gene sequences and allelic variation in S. incanum and S. aethiopicum. This work is a first step toward better understanding of target genes involved in metabolic pathways relevant for eggplant breeding. The molecular markers detected in this study could be used across all the eggplant genepool, which is of interest for breeding programs as well as to perform marker-trait association and QTL analysis studies. es_ES
dc.description.sponsorship This work has been partially funded by Spanish Ministerio de Economia y Competitividad and FEDER (grant AGL2015-64755-450 R).
dc.language Inglés es_ES
dc.publisher Springer (Biomed Central Ltd.) es_ES
dc.relation.ispartof BMC Genomics es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Solanum incanum es_ES
dc.subject S. aethiopicum es_ES
dc.subject Eggplant genepool es_ES
dc.subject De novo transcriptome es_ES
dc.subject Gene annotation es_ES
dc.subject Molecular marker discovery es_ES
dc.subject.classification GENETICA es_ES
dc.title Transcriptome analysis and molecular marker discovery in Solanum incanum and S. aethiopicum, two close relatives of the common eggplant (Solanum melongena) with interest for breeding es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1186/s12864-016-2631-4 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//AGL2015-64755-R/ES/MEJORA GENETICA DE LA CALIDAD FUNCIONAL Y APARENTE DE LA BERENJENA/
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana - Institut Universitari de Conservació i Millora de l'Agrodiversitat Valenciana es_ES
dc.description.bibliographicCitation Gramazio, P.; Blanca Postigo, JM.; Ziarsolo Areitioaurtena, P.; Herraiz García, FJ.; Plazas Ávila, MDLO.; Prohens Tomás, J.; Vilanova Navarro, S. (2016). Transcriptome analysis and molecular marker discovery in Solanum incanum and S. aethiopicum, two close relatives of the common eggplant (Solanum melongena) with interest for breeding. BMC Genomics. 17(300). https://doi.org/10.1186/s12864-016-2631-4 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1186/s12864-016-2631-4 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 17 es_ES
dc.description.issue 300 es_ES
dc.identifier.pmid 27108408 en_EN
dc.identifier.pmcid PMC4841963
dc.relation.pasarela S\311224 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references The FAOSTAT Database. [ http://faostat.fao.org/ ]. Accessed 20 September 2015. es_ES
dc.description.references Collonnier C, Fock I, Kashyap V, Rotino G, Daunay M, Lian Y, et al. Applications of biotechnology in eggplant. Plant Cell Tiss Org. 2001;65(2):91–107. es_ES
dc.description.references Plazas M, Andújar I, Vilanova S, Gramazio P, Herraiz FJ, Prohens J. Conventional and phenomics characterization provides insight into the diversity and relationships of hypervariable scarlet (Solanum aethiopicum L.) and gboma (S. macrocarpon L.) eggplant complexes. Front Plant Sci. 2014. doi: 10.3389/fpls.2014.00318 . es_ES
dc.description.references Rotino GL, Sala T, Toppino L. Eggplant. In: Pratap A, Kumar J, editors. Alien Gene Transfer in Crop Plants, vol. 2. New York: Springer; 2014. p. 381–409. es_ES
dc.description.references Meyer RS, Karol KG, Little DP, Nee MH, Litt A. Phylogeographic relationships among Asian eggplants and new perspectives on eggplant domestication. Mol Phylogenet Evol. 2012;63(3):685–701. es_ES
dc.description.references Schippers RR. African indigenous vegetables: an overview of the cultivated species. Wallingford: UK: CAB International; 2000. es_ES
dc.description.references Maundu P, Achigan-Dako E, Morimoto Y. Biodiversity of African vegetables. In: Shackleton CM, Pasquini MW, Drescher AW, editors. African indigenous vegetables in urban agriculture. UK: MapSet Ltd; 2009. p. 65–104. es_ES
dc.description.references Vorontsova M, Stern S, Bohs L, Knapp S. African spiny Solanum (subgenus Leptostemonum, Solanaceae): a thorny phylogenetic tangle. Bot J Linn Soc. 2013;173(2):176–93. es_ES
dc.description.references Rizza F, Mennella G, Collonnier C, Sihachakr D, Kashyap V, Rajam M, et al. Androgenic dihaploids from somatic hybrids between Solanum melongena and S. aethiopicum group gilo as a source of resistance to Fusarium oxysporum f. sp. melongenae. Plant Cell Rep. 2002;20(11):1022–32. es_ES
dc.description.references Mennella G, Rotino GL, Fibiani M, D’Alessandro A, Francese G, Toppino L, et al. Characterization of health-related compounds in eggplant (Solanum melongena L.) lines derived from introgression of allied species. J Agric Food Chem. 2010;58(13):7597–603. es_ES
dc.description.references Prohens J, Plazas M, Raigón MD, Seguí-Simarro JM, Stommel JR, Vilanova S. Characterization of interspecific hybrids and first backcross generations from crosses between two cultivated eggplants (Solanum melongena and S. aethiopicum Kumba group) and implications for eggplant breeding. Euphytica. 2012;186(2):517–38. es_ES
dc.description.references Prohens J, Whitaker BD, Plazas M, Vilanova S, Hurtado M, Blasco M, et al. Genetic diversity in morphological characters and phenolic acids content resulting from an interspecific cross between eggplant, Solanum melongena, and its wild ancestor (S. incanum). Ann Appl Biol. 2013;162(2):242–57. es_ES
dc.description.references Plazas M, Prohens J, Cuñat AN, Vilanova S, Gramazio P, Herraiz FJ, Andújar I. Reducing Capacity, Chlorogenic Acid Content and Biological Activity in a Collection of Scarlet (Solanum aethiopicum) and Gboma (S. macrocarpon) Eggplants. Int J Mol Sci. 2014;15(10):17221–41. es_ES
dc.description.references Lester RN, Hasan SMZ. Origin and domestication of the brinjal eggplant, Solanum melongena, from S. incanum, in Africa and Asia. In: Hawkes JG, Lester RN, Nee MH, Estrada N, editors. Solanaceae III: taxonomy, chemistry, evolution. London, U.K: Royal Botanic Gardens, Kew; 1991. p. 369–88. es_ES
dc.description.references Knapp S, Vorontsova MS, Prohens J. Wild relatives of the eggplant (Solanum melongena L.: Solanaceae): new understanding of species names in a complex group. PLoS One. 2013;8(2):e57039. es_ES
dc.description.references Stommel JR, Whitaker BD. Phenolic acid content and composition of eggplant fruit in a germplasm core subset. J Am Soc Hort Sci. 2003;128(5):704–10. es_ES
dc.description.references Yamakawa K, Mochizuki H. Nature and inheritance of Fusarium-wilt resistance in eggplant cultivars and related wild Solanum species. Bulletin of the Vegetable and Ornamental Crops Research Station. 1979;6:19–27. es_ES
dc.description.references Anis M, Baksh S, Iqbal M. Cytogenetic Studies on the F1 Hybrid Solanum incanum * S. melongena var. American Wonder. Cytologia. 1994;59(4):433–6. es_ES
dc.description.references Behera T, Singh N. Inter-specific crosses between eggplant (Solanum melongena L.) with related Solanum species. Sci. Hortic. 2002;95(1):165–72. es_ES
dc.description.references Gramazio P, Prohens J, Plazas M, Andujar I, Herraiz FJ, Castillo E, et al. Location of chlorogenic acid biosynthesis pathway and polyphenol oxidase genes in a new interspecific anchored linkage map of eggplant. BMC Plant Biol. 2014;14:350. es_ES
dc.description.references Schippers RR. African indigenous vegetables: an overview of the cultivated species. 2000. es_ES
dc.description.references Sunseri F, Polignano GB, Alba V, Lotti C, Bisignano V, Mennella G, et al. Genetic diversity and characterization of African eggplant germplasm collection. Afr J Plant Sci. 2010;4(7):231–41. es_ES
dc.description.references Lester R, Niakan L. Origin and domestication of the scarlet eggplant, Solanum aethiopicum, from S. anguivi in Africa. In: D’Arcy WG, editor. Solanaceae: Biology and systematics. Columbia: Columbia University Press; 1986. p. 433–56. es_ES
dc.description.references Cappelli C, Stravato VM, Rotino GL, Buonaurio R. Sources of resistance among Solanum spp. to an Italian isolate of Fusarium oxysporum f sp. Melongenae. Proceeding of the 9th EUCARPIA meeting on genetics and breeding of capsicum and eggplant. 1995. p. 221–4. es_ES
dc.description.references Collonnier C, Mulya K, Fock I, Mariska I, Servaes A, Vedel F, et al. Source of resistance against Ralstonia solanacearum in fertile somatic hybrids of eggplant (Solanum melongena L.) with Solanum aethiopicum L. Plant Sci. 2001;160(2):301–13. es_ES
dc.description.references Gisbert C, Prohens J, Raigón MD, Stommel JR, Nuez F. Eggplant relatives as sources of variation for developing new rootstocks: Effects of grafting on eggplant yield and fruit apparent quality and composition. Sci Hortic. 2011;128(1):14–22. es_ES
dc.description.references Nunome T, Ishiguro K, Yoshida T, Hirai M. Mapping of Fruit Shape and Color Development Traits in Eggplant (Solanum melongena L.) Based on RAPD and AFLP Markers. Breed Sci. 2001;51(1):19–26. es_ES
dc.description.references Doganlar S, Frary A, Daunay MC, Lester RN, Tanksley SD. A comparative genetic linkage map of eggplant (Solanum melongena) and its implications for genome evolution in the Solanaceae. Genetics. 2002;161(4):1697–711. es_ES
dc.description.references Barchi L, Lanteri S, Portis E, Acquadro A, Vale G, Toppino L, et al. Identification of SNP and SSR markers in eggplant using RAD tag sequencing. BMC Genomics. 2011;12:304. es_ES
dc.description.references Fukuoka H, Miyatake K, Nunome T, Negoro S, Shirasawa K, Isobe S, et al. Development of gene-based markers and construction of an integrated linkage map in eggplant by using Solanum orthologous (SOL) gene sets. Theor Appl Genet. 2012;125(1):47–56. es_ES
dc.description.references Nunome T, Negoro S, Kono I, Kanamori H, Miyatake K, Yamaguchi H, et al. Development of SSR markers derived from SSR-enriched genomic library of eggplant (Solanum melongena L.). Theor Appl Genet. 2009;119(6):1143–53. es_ES
dc.description.references Vilanova S, Manzur JP, Prohens J. Development and characterization of genomic simple sequence repeat markers in eggplant and their application to the study of diversity and relationships in a collection of different cultivar types and origins. Mol Breed. 2012;30(2):647–60. es_ES
dc.description.references Yang X, Cheng YF, Deng C, Ma Y, Wang ZW, Chen XH, et al. Comparative transcriptome analysis of eggplant (Solanum melongena L.) and turkey berry (Solanum torvum Sw.): phylogenomics and disease resistance analysis. BMC Genomics. 2014;15(1):412. es_ES
dc.description.references Hirakawa H, Shirasawa K, Miyatake K, Nunome T, Negoro S, Ohyama A, et al. Draft genome sequence of eggplant (Solanum melongena L.): the representative solanum species indigenous to the old world. DNA Res. 2014;21(6):649–60. es_ES
dc.description.references The NCBI (National Center for Biotechnology Information) database. [ http://www.ncbi.nlm.nih.gov/ ]. Accessed 20 September 2015. es_ES
dc.description.references Jaiswal B. Solanum torvum: a review of its traditional uses, phytochemistry and pharmacology. Int J Pharm Biol Sci. 2012;3:4. es_ES
dc.description.references Mohan M, Kamble S, Gadhi P, Kasture S. Protective effect of Solanum torvum on doxorubicin-induced nephrotoxicity in rats. Food Chem Toxicol. 2010;48(1):436–40. es_ES
dc.description.references Gandhi GR, Ignacimuthu S, Paulraj MG, Sasikumar P. Antihyperglycemic activity and antidiabetic effect of methyl caffeate isolated from Solanum torvum Swartz. fruit in streptozotocin induced diabetic rats. Eur J Pharmacol. 2011;670(2):623–31. es_ES
dc.description.references Gousset C, Collonnier C, Mulya K, Mariska I, Rotino GL, Besse P, et al. Solanum torvum, as a useful source of resistance against bacterial and fungal diseases for improvement of eggplant (S. melongena L.). Plant Sci. 2005;168(2):319–27. es_ES
dc.description.references Bagnaresi P, Sala T, Irdani T, Scotto C, Lamontanara A, Beretta M, et al. Solanum torvum responses to the root-knot nematode Meloidogyne incognita. BMC Genomics. 2013;14:540. es_ES
dc.description.references Guri A, Sink K. Interspecific somatic hybrid plants between eggplant (Solanum melongena) and Solanum torvum. Theor Appl Genet. 1988;76(4):490–6. es_ES
dc.description.references Sihachakr D, Haicour R, Chaput M, Barrientos E, Ducreux G, Rossignol L. Somatic hybrid plants produced by electrofusion between Solanum melongena L. and Solanum torvum Sw. Theor Appl Genet. 1989;77(1):1–6. es_ES
dc.description.references Collonnier C, Fock I, Mariska I, Servaes A, Vedel F, Siljak-Yakovlev S, et al. GISH confirmation of somatic hybrids between Solanum melongena and S. torvum: assessment of resistance to both fungal and bacterial wilts. Plant Physiol Biochem. 2003;41(5):459–70. es_ES
dc.description.references Kumchai J, Wei Y, Lee C, Chen F, Chin S. Production of interspecific hybrids between commercial cultivars of the eggplant (Solanum melongena L.) and its wild relative S. torvum. Gen Mol Res. 2013;12(1):755–64. es_ES
dc.description.references YiKui W, YanYan F, Hong W, WenJia L, Yan L. Pollen development and anther callus induction in hybrid F1 by Solanum torvum SW. (♂) × Solanum melongena L. (♀). Journal of Southern Agriculture. 2014;45(12):1967–71. es_ES
dc.description.references Takeda H, Sato A, Nishihara E, Arao T. Reduction of cadmium concentration in eggplant (Solanum melongena) fruits by grafting with Solanum torvum rootstock. Japanese Journal of Soil Science and Plant Nutrition. 2007. es_ES
dc.description.references Sabatino L, Palazzolo E, D’Anna F. Grafting suitability of Sicilian eggplant ecotypes onto Solanum torvum: Fruit composition, production and phenology. Int j food, agric and environ. 2013;11(3):1195–200. es_ES
dc.description.references Miceli A, Sabatino L, Moncada A, Vetrano F, D’Anna F. Nursery and field evaluation of eggplant grafted onto unrooted cuttings of Solanum torvum Sw. Sci Hort. 2014;178:203–10. es_ES
dc.description.references Davey JW, Blaxter ML. RADSeq: next-generation population genetics. Brief Funct Genomics. 2010;9(5-6):416–23. es_ES
dc.description.references Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 2011;29(7):644–52. es_ES
dc.description.references Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv preprint. arXiv. 2013;1303:3997. es_ES
dc.description.references Van Dijk EL, Auger H, Jaszczyszyn Y, Thermes C. Ten years of next-generation sequencing technology. Trends Genet. 2014;30(9):418–26. es_ES
dc.description.references Lee S, Abecasis GR, Boehnke M, Lin X. Rare-variant association analysis: study designs and statistical tests. Am J Hum Genet. 2014;95(1):5–23. es_ES
dc.description.references Faure D, Joly D. Next-generation sequencing as a powerful motor for advances in the biological and environmental sciences. Genetica. 2015;143(2):129–32. es_ES
dc.description.references Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics. 2011;12(1):323. es_ES
dc.description.references Krzywinski M, Schein J, Birol İ, Connors J, Gascoyne R, Horsman D, et al. Circos: an information aesthetic for comparative genomics. Genome Res. 2009;19(9):1639–45. es_ES
dc.description.references Erayman M, Sandhu D, Sidhu D, Dilbirligi M, Baenziger PS, Gill KS. Demarcating the gene-rich regions of the wheat genome. Nucleic Acids Res. 2004;32(12):3546–65. es_ES
dc.description.references Mizuno H, Kawahara Y, Wu J, Katayose Y, Kanamori H, Ikawa H, et al. Asymmetric distribution of gene expression in the centromeric region of rice chromosome 5. Front Plant Sci. 2011;2:16. es_ES
dc.description.references Fukuoka H, Yamaguchi H, Nunome T, Negoro S, Miyatake K, Ohyama A. Accumulation, functional annotation, and comparative analysis of expressed sequence tags in eggplant (Solanum melongena L.), the third pole of the genus Solanum species after tomato and potato. Gene. 2010;450(1):76–84. es_ES
dc.description.references Groves RA, Hagel JM, Zhang Y, Kilpatrick K, Levy A, Marsolais F, et al. Transcriptome profiling of khat (Catha edulis) and Ephedra sinica reveals gene candidates potentially involved in amphetamine-type alkaloid biosynthesis. PLoS One. 2015;10(3):e0119701. es_ES
dc.description.references Zhang J, Liu W, Han H, Song L, Bai L, Gao Z, et al. De novo transcriptome sequencing of Agropyron cristatum to identify available gene resources for the enhancement of wheat. Genomics. 2015;106(2):129–36. es_ES
dc.description.references Zhang S, Shi Y, Cheng N, Du H, Fan W, Wang C. De novo characterization of fall dormant and nondormant alfalfa (Medicago sativa L.) leaf transcriptome and identification of candidate genes related to fall dormancy. PLoS One. 2015;10(3):e0122170. es_ES
dc.description.references Mutz K, Heilkenbrinker A, Lönne M, Walter J, Stahl F. Transcriptome analysis using next-generation sequencing. Curr Opin Biotechnol. 2013;24(1):22–30. es_ES
dc.description.references The Swiss-Prot database. [ http://web.expasy.org/docs/swiss-prot_guideline.html ]. Accessed 20 September 2015. es_ES
dc.description.references The ITAG2.4 database. [ ftp://ftp.sgn.cornell.edu/tomato_genome/annotation/ ]. Accessed 20 September 2015. es_ES
dc.description.references The TAIR database: The Arabidopsis Information Resource. [ http://www.arabidopsis.org/ ]. Accessed 20 September 2015. es_ES
dc.description.references The UniRef90 database. [ http://www.ebi.ac.uk/uniprot/database/download.html ]. Accessed 20 September 2015. es_ES
dc.description.references Conesa A, Gotz S. Blast2GO: A comprehensive suite for functional analysis in plant genomics. Int J Plant Genomics. 2008;2008:619832. es_ES
dc.description.references Tomato Genome Consortium. The tomato genome sequence provides insights into fleshy fruit evolution. Nature. 2012;485(7400):635–41. es_ES
dc.description.references Ashrafi H, Hill T, Stoffel K, Kozik A, Yao J, Chin-Wo SR, et al. De novo assembly of the pepper transcriptome (Capsicum annuum): a benchmark for in silico discovery of SNPs, SSRs and candidate genes. BMC Genomics. 2012;13:571. es_ES
dc.description.references Bao Y, Xu S, Jing X, Meng L, Qin Z. De Novo Assembly and Characterization of Oryza officinalis Leaf Transcriptome by Using RNA-Seq. Biomed Res Int. 2015;2015:982065. es_ES
dc.description.references Lu X, Kim H, Zhong S, Chen H, Hu Z, Zhou B. De novo transcriptome assembly for rudimentary leaves in Litchi chinesis Sonn. and identification of differentially expressed genes in response to reactive oxygen species. BMC Genomics. 2014;15(1):805. es_ES
dc.description.references Ranjan A, Ichihashi Y, Farhi M, Zumstein K, Townsley B, David-Schwartz R, et al. De novo assembly and characterization of the transcriptome of the parasitic weed dodder identifies genes associated with plant parasitism. Plant Physiol. 2014;166(3):1186–99. es_ES
dc.description.references Laurent GS, Wahlestedt C, Kapranov P. The Landscape of long noncoding RNA classification. Trends Genet. 2015;31(5):239–51. es_ES
dc.description.references The lncRNA (Long Noncoding RNA) database. [ http://www.lncrnadb.org/ ]. Accessed 20 September 2015. es_ES
dc.description.references Liu J, Jung C, Xu J, Wang H, Deng S, Bernad L, et al. Genome-wide analysis uncovers regulation of long intergenic noncoding RNAs in Arabidopsis. Plant Cell. 2012;24(11):4333–45. es_ES
dc.description.references Liu J, Wang H, Chua N. Long noncoding RNA transcriptome of plants. Plant Biotech J. 2015;13(3):319–28. es_ES
dc.description.references Webb EC. Enzyme nomenclature 1992. Recommendations of the Nomenclature Committee of the International Union of Biochemistry and Molecular Biology on the Nomenclature and Classification of Enzymes. Academic Press. 1992. es_ES
dc.description.references Niederhuth CE, Patharkar OR, Walker JC. Transcriptional profiling of the Arabidopsis abscission mutant hae hsl2 by RNA-Seq. BMC Genomics. 2013;14:37. es_ES
dc.description.references Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27–30. es_ES
dc.description.references Iseli C, Jongeneel CV, Bucher P. ESTScan: a program for detecting, evaluating, and reconstructing potential coding regions in EST sequences. Int Conf Intell Syst Mol Bio. 1999;7:138–48. es_ES
dc.description.references Mott R. EST_GENOME: a program to align spliced DNA sequences to unspliced genomic DNA. Comput Appl Biosci. 1997;13:477–8. es_ES
dc.description.references Kumar S, Banks TW, Cloutier S. SNP discovery through next-generation sequencing and its applications. Int J Plant Genomics. 2012. doi: 10.1155/2012/831460 . es_ES
dc.description.references Zalapa JE, Cuevas H, Zhu H, Steffan S, Senalik D, Zeldin E, et al. Using next-generation sequencing approaches to isolate simple sequence repeat (SSR) loci in the plant sciences. Am J Bot. 2012;99(2):193–208. es_ES
dc.description.references Ramos AM, Crooijmans RP, Affara NA, Amaral AJ, Archibald AL, Beever JE, et al. Design of a high density SNP genotyping assay in the pig using SNPs identified and characterized by next generation sequencing technology. PLoS One. 2009;4(8):e6524. es_ES
dc.description.references Robbins MD, Sim SC, Yang W, Van Deynze A, van der Knaap E, Joobeur T, et al. Mapping and linkage disequilibrium analysis with a genome-wide collection of SNPs that detect polymorphism in cultivated tomato. J Exp Bot. 2011;62(6):1831–45. es_ES
dc.description.references Sim S, Durstewitz G, Plieske J, Wieseke R, Ganal MW, Van Deynze A, et al. Development of a large SNP genotyping array and generation of high-density genetic maps in tomato. PLoS One. 2012;7:e40563. es_ES
dc.description.references Garrison E, Marth G. Haplotype-based variant detection from short-read sequencing. arXiv preprint. arXiv. 2012;1207:3907. es_ES
dc.description.references Wittwer CT, Reed GH, Gundry CN, Vandersteen JG, Pryor RJ. High-resolution genotyping by amplicon melting analysis using LCGreen. Clin Chem. 2003;49(6):853–60. es_ES
dc.description.references Daunay M. Eggplant. In: Prohens J, Nuez F, editors. Vegetables II: Handbook of plant Breeding. New York: Springer; 2008. p. 163–220. es_ES
dc.description.references Amar MH, Biswas MK, Zhang Z, Guo W. Exploitation of SSR, SRAP and CAPS-SNP markers for genetic diversity of Citrus germplasm collection. Sci Hortic. 2011;128(3):220–7. es_ES
dc.description.references Pariasca-Tanaka J, Lorieux M, He C, McCouch S, Thomson MJ, Wissuwa M. Development of a SNP genotyping panel for detecting polymorphisms in Oryza glaberrima/O. sativa interspecific crosses. Euphytica. 2015;201(1):67–78. es_ES
dc.description.references Fan J, Chee MS, Gunderson KL. Highly parallel genomic assays. Nat Rev Genet. 2006;7(8):632–44. es_ES
dc.description.references Gupta P, Rustgi S, Mir R. Array-based high-throughput DNA markers for crop improvement. Heredity. 2008;101(1):5–18. es_ES
dc.description.references Abajian C. Sputnik. University of Washington Department of Molecular Biotechnology. 1994. es_ES
dc.description.references Ding Q, Li J, Wang F, Zhang Y, Li H, Zhang J, Gao J. Characterization and Development of EST-SSRs by Deep Transcriptome Sequencing in Chinese Cabbage (Brassica rapa L. ssp. pekinensis). Int J Genomics. 2015;2015:473028. es_ES
dc.description.references Chen H, Wang L, Wang S, Liu C, Blair MW, Cheng X. Transcriptome sequencing of mung bean (Vigna radiate L.) genes and the identification of EST-SSR markers. PLoS One. 2015;10(4):e0120273. es_ES
dc.description.references Zeng S, Xiao G, Guo J, Fei Z, Xu Y, Roe BA, et al. Development of a EST dataset and characterization of EST-SSRs in a traditional Chinese medicinal plant, Epimedium sagittatum (Sieb. Et Zucc.) Maxim. BMC Genomics. 2010;11(1):94. es_ES
dc.description.references Pinosio S, González‐Martínez S, Bagnoli F, Cattonaro F, Grivet D, Marroni F, et al. First insights into the transcriptome and development of new genomic tools of a widespread circum‐Mediterranean tree species, Pinus halepensis Mill. Mol Ecol Resour. 2014;14(4):846–56. es_ES
dc.description.references Gao C, Xin P, Cheng C, Tang Q, Chen P, Wang C, et al. Diversity Analysis in Cannabis sativa Based on Large-Scale Development of Expressed Sequence Tag-Derived Simple Sequence Repeat Markers. PLoS One. 2014;9(10):e110638. es_ES
dc.description.references Stàgel A, Portis E, Toppino L, Rotino GL, Lanteri S. Gene-based microsatellite development for mapping and phylogeny studies in eggplant. BMC Genomics. 2008;9(1):357. es_ES
dc.description.references Blanca J, Canizares J, Roig C, Ziarsolo P, Nuez F, Pico B. Transcriptome characterization and high throughput SSRs and SNPs discovery in Cucurbita pepo (Cucurbitaceae). BMC Genomics. 2011;12:104. es_ES
dc.description.references Schlautman B, Fajardo D, Bougie T, Wiesman E, Polashock J, Vorsa N, et al. Development and Validation of 697 Novel Polymorphic Genomic and EST-SSR Markers in the American Cranberry (Vaccinium macrocarpon Ait.). Molecules. 2015;20(2):2001–13. es_ES
dc.description.references Metzgar D, Bytof J, Wills C. Selection against frameshift mutations limits microsatellite expansion in coding DNA. Genome Res. 2000;10(1):72–80. es_ES
dc.description.references Li YC, Korol AB, Fahima T, Nevo E. Microsatellites within genes: structure, function, and evolution. Mol Biol Evol. 2004;21(6):991–1007. es_ES
dc.description.references Gonzalez-Ibeas D, Blanca J, Roig C, Gonzalez-To M, Pico B, Truniger V, et al. MELOGEN: an EST database for melon functional genomics. BMC Genomics. 2007;8:306. es_ES
dc.description.references Durand J, Bodenes C, Chancerel E, Frigerio JM, Vendramin G, Sebastiani F, et al. A fast and cost-effective approach to develop and map EST-SSR markers: oak as a case study. BMC Genomics. 2010;11:570. es_ES
dc.description.references Zhou C, He X, Li F, Weng Q, Yu X, Wang Y, et al. Development of 240 novel EST-SSRs in Eucalyptus L’Hérit. Mol Breed. 2014;33(1):221–5. es_ES
dc.description.references Kumar B, Kumar U, Yadav HK. Identification of EST–SSRs and molecular diversity analysis in Mentha piperita. The Crop Journal. 2015;3(4):335–42. es_ES
dc.description.references Varshney RK, Graner A, Sorrells ME. Genic microsatellite markers in plants: features and applications. Trends Biotechnol. 2005;23(1):48–55. es_ES
dc.description.references Poczai P, Varga I, Laos M, Cseh A, Bell N, Valkonen JP, et al. Advances in plant gene-targeted and functional markers: a review. Plant Methods. 2013;9(1):6. es_ES
dc.description.references The FastQC software. [ http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ ]. Accessed 20 September 2015. es_ES
dc.description.references The NGS_CRUMBS software. [ https://bioinf.comav.upv.es/ngs_crumbs/ ]. Accessed 20 September 2015. es_ES
dc.description.references Huang X, Madan A. CAP3: A DNA sequence assembly program. Genome Res. 1999;9(9):868–77. es_ES
dc.description.references Morgulis A, Gertz EM, Schäffer AA, Agarwala R. A fast and symmetric DUST implementation to mask low-complexity DNA sequences. J Comput Biology. 2006;13(5):1028–40. es_ES
dc.description.references The GOterm database. [ http://geneontology.org/ ]. Accessed 20 September 2015. es_ES
dc.description.references Trapnell C, Pachter L, Salzberg SL. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics. 2009;25(9):1105–11. es_ES
dc.description.references McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20(9):1297–303. es_ES
dc.description.references The eggplant genome database. [ http://eggplant.kazusa.or.jp/ ]. Accessed 20 September 2015. es_ES
dc.description.references The IGV software. [ http://www.broadinstitute.org/igv/ ]. Accessed 20 September 2015. es_ES
dc.description.references The Primer3 software. [ http://bioinfo.ut.ee/primer3-0.4.0/ ]. Accessed 20 September 2015. es_ES
dc.description.references Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26(6):841–2. es_ES


This item appears in the following Collection(s)

Show simple item record