- -

Solving random homogeneous linear second-order differential equations: a full probabilistic description

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Solving random homogeneous linear second-order differential equations: a full probabilistic description

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Casabán, M.C. es_ES
dc.contributor.author Cortés, J.C. es_ES
dc.contributor.author Romero, José-Vicente es_ES
dc.contributor.author Roselló, María-Dolores es_ES
dc.date.accessioned 2018-01-11T14:05:44Z
dc.date.available 2018-01-11T14:05:44Z
dc.date.issued 2016 es_ES
dc.identifier.issn 1660-5446 es_ES
dc.identifier.uri http://hdl.handle.net/10251/94531
dc.description.abstract [EN] In this paper a complete probabilistic description for the solution of random homogeneous linear second-order differential equations via the computation of its two first probability density functions is given. As a consequence, all unidimensional and two-dimensional statistical moments can be straightforwardly determined, in particular, mean, variance and covariance functions, as well as the first-order conditional law. With the aim of providing more generality, in a first step, all involved input parameters are assumed to be statistically dependent random variables having an arbitrary joint probability density function. Second, the particular case that just initial conditions are random variables is also analysed. Both problems have common and distinctive feature which are highlighted in our analysis. The study is based on random variable transformation method. As a consequence of our study, the well-known deterministic results are nicely generalized. Several illustrative examples are included. es_ES
dc.description.sponsorship This work has been partially supported by the Spanish M. C. Y. T. Grant MTM2013-41765-P. en_EN
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Mediterranean Journal of Mathematics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Random variable transformation method es_ES
dc.subject First and second probability density functions es_ES
dc.subject Random homogeneous linear second-order differential equations. es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Solving random homogeneous linear second-order differential equations: a full probabilistic description es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s00009-016-0716-6 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MTM2013-41765-P/ES/METODOS COMPUTACIONALES PARA ECUACIONES DIFERENCIALES ALEATORIAS: TEORIA Y APLICACIONES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.date.embargoEndDate 2017-12-01 es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Casabán, M.; Cortés, J.; Romero, J.; Roselló, M. (2016). Solving random homogeneous linear second-order differential equations: a full probabilistic description. Mediterranean Journal of Mathematics. 13(6):3817-3836. https://doi.org/10.1007/s00009-016-0716-6 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s00009-016-0716-6 es_ES
dc.description.upvformatpinicio 3817 es_ES
dc.description.upvformatpfin 3836 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 13 es_ES
dc.description.issue 6 es_ES
dc.relation.pasarela S\311427 es_ES
dc.contributor.funder Ministerio de Economía, Industria y Competitividad es_ES
dc.description.references Øksendal B.: Stochastic Differential Equations: An Introduction with Applications, 6th edn. Springer, Berlin (2007) es_ES
dc.description.references Soong T.T.: Random Differential Equations in Science and Engineering. Academic Press, New York (1973) es_ES
dc.description.references Neckel, T., Rupp, F.: Random Differential Equations in Scientific Computing. Versita, London (2013) es_ES
dc.description.references Nouri, K., Ranjbar, H.: Mean square convergence of the numerical solution of random differential equations. Mediterr. J. Math. 1–18 (2014). doi: 10.1007/s00009-014-0452-8 es_ES
dc.description.references Villafuerte, L., Chen-Charpentier, B.M.: A random differential transform method: theory and applications. Appl. Math. Lett. 25(10), 1490–1494 (2012). doi: 10.1016/j.aml.2011.12.033 es_ES
dc.description.references Licea, J.A., Villafuerte, L., Chen-Charpentier, B.M.: Analytic and numerical solutions of a Riccati differential equation with random coefficients. J. Comput. Appl. Math. 239, 208–219 (2013). doi: 10.1016/j.cam.2012.09.040 es_ES
dc.description.references Casabán, M.C., Cortés, J.C., Romero, J.V., Roselló, M.D.: Probabilistic solution of random homogeneous linear second-order difference equations. Appl. Math. Lett. 34, 27–32 (2014). doi: 10.1016/j.aml.2014.03.010 es_ES
dc.description.references Santos, L.T., Dorini, F.A., Cunha, M.C.C.: The probability density function to the random linear transport equation. Appl. Math. Comput. 216 (5), 1524–1530 (2010). doi: 10.16/j.amc.2010.03.001 es_ES
dc.description.references El-Tawil, M., El-Tahan, W., Hussein, A.: Using FEM-RVT technique for solving a randomly excited ordinary differential equation with a random operator. Appl. Math. Comput. 187(2), 856–867 (2007). doi: 10.1016/j.amc.2006.08.164 es_ES
dc.description.references Hussein, A., Selim, M.M.: Solution of the stochastic radiative transfer equation with Rayleigh scattering using RVT technique. Appl. Math. Comput. 218(13), 7193–7203 (2012). doi: 10.1016/j.amc.2011.12.088 es_ES
dc.description.references Casabán, M.C., Cortés, J.C., Romero, J.V., Roselló, M.D.: Probabilistic solution of random SI-type epidemiological models using the random variable transformation technique. Commun. Nonlinear Sci. Numer. Simul. 24(1–3), 86–97 (2015). doi: 10.1016/j.cnsns.2014.12.016 es_ES
dc.description.references Casabán, M.C., Cortés, J.C., Romero, J.V., Roselló, M.D.: Determining the first probability density function of linear random initial value problems by the random variable transformation (RVT) technique: a comprehensive study. In: Abstract and Applied Analysis 2014-ID248512, pp. 1–25 (2014). doi: 10.1155/2013/248512 es_ES
dc.description.references Casabán, M.C., Cortés, J.C., Navarro-Quiles, A., Romero, J.V., Roselló, M.D., Villanueva, R.J.: A comprehensive probabilistic solution of random SIS-type epidemiological models using the random variable transformation technique. Commun. Nonlinear Sci. Numer. Simul. 32, 199–210 (2016). doi: 10.1016/j.cnsns.2015.08.009 es_ES
dc.description.references El-Wakil, S.A., Sallah, M., El-Hanbaly, A.M.: Random variable transformation for generalized stochastic radiative transfer in finite participating slab media. Phys. A 435 66–79 (2015). doi: 10.1016/j.physa.2015.04.033 es_ES
dc.description.references Dorini, F.A., Cunha, M.C.C.: On the linear advection equation subject to random fields velocity. Math. Comput. Simul. 82, 679–690 (2011). doi: 10.16/j.matcom.2011.10.008 es_ES
dc.description.references Dhople, S.V., Domínguez-García, D.: A parametric uncertainty analysis method for Markov reliability and reward models. IEEE Trans. Reliab. 61(3), 634–648 (2012). doi: 10.1109/TR.2012.2208299 es_ES
dc.description.references Williams, M.M.R.: Polynomial chaos functions and stochastic differential equations. Ann. Nucl. Energy 33(9), 774–785 (2006). doi: 10.1016/j.anucene.2006.04.005 es_ES
dc.description.references Chen-Charpentier, B.M., Stanescu, D.: Epidemic models with random coefficients. Math. Comput. Model. 52(7/8), 1004–1010 (2009). doi: 10.1016/j.mcm.2010.01.014 es_ES
dc.description.references Papoulis A.: Probability, Random Variables and Stochastic Processes. McGraw-Hill, New York (1991) es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem