- -

Probabilistic Forecasting of Drought Events Using Markov Chain- and Bayesian Network-Based Models A Case Study of an Andean Regulated River Basin

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Probabilistic Forecasting of Drought Events Using Markov Chain- and Bayesian Network-Based Models A Case Study of an Andean Regulated River Basin

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Avilés-Añazco, Alex es_ES
dc.contributor.author Celleri, Rolando es_ES
dc.contributor.author Solera Solera, Abel es_ES
dc.contributor.author Paredes Arquiola, Javier es_ES
dc.date.accessioned 2018-01-12T12:55:32Z
dc.date.available 2018-01-12T12:55:32Z
dc.date.issued 2016 es_ES
dc.identifier.issn 2073-4441 es_ES
dc.identifier.uri http://hdl.handle.net/10251/94611
dc.description.abstract [EN] The scarcity of water resources in mountain areas can distort normal water application patterns with among other effects, a negative impact on water supply and river ecosystems. Knowing the probability of droughts might help to optimize a priori the planning and management of the water resources in general and of the Andean watersheds in particular. This study compares Markov chain- (MC) and Bayesian network- (BN) based models in drought forecasting using a recently developed drought index with respect to their capability to characterize different drought severity states. The copula functions were used to solve the BNs and the ranked probability skill score (RPSS) to evaluate the performance of the models. Monthly rainfall and streamflow data of the Chulco River basin, located in Southern Ecuador, were used to assess the performance of both approaches. Global evaluation results revealed that the MC-based models predict better wet and dry periods, and BN-based models generate slightly more accurately forecasts of the most severe droughts. However, evaluation of monthly results reveals that, for each month of the hydrological year, either the MC- or BN-based model provides better forecasts. The presented approach could be of assistance to water managers to ensure that timely decision-making on drought response is undertaken es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Water es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Probabilistic drought forecasting es_ES
dc.subject Drought index es_ES
dc.subject Markov chains es_ES
dc.subject Bayesian networks es_ES
dc.subject copulas es_ES
dc.subject Andean watersheds es_ES
dc.subject.classification INGENIERIA HIDRAULICA es_ES
dc.title Probabilistic Forecasting of Drought Events Using Markov Chain- and Bayesian Network-Based Models A Case Study of an Andean Regulated River Basin es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/w8020037 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient es_ES
dc.description.bibliographicCitation Avilés-Añazco, A.; Celleri, R.; Solera Solera, A.; Paredes Arquiola, J. (2016). Probabilistic Forecasting of Drought Events Using Markov Chain- and Bayesian Network-Based Models A Case Study of an Andean Regulated River Basin. Water. 8(2). doi:10.3390/w8020037 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/w8020037 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 8 es_ES
dc.description.issue 2 es_ES
dc.relation.pasarela S\299836 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem