Mostrar el registro sencillo del ítem
dc.contributor.author | Rubio Michavila, Constanza | es_ES |
dc.contributor.author | Uris Martínez, Antonio | es_ES |
dc.contributor.author | Candelas Valiente, Pilar | es_ES |
dc.contributor.author | Belmar Ibáñez, Francisco | es_ES |
dc.contributor.author | Gómez Lozano, Vicente | es_ES |
dc.date.accessioned | 2018-01-24T13:33:21Z | |
dc.date.available | 2018-01-24T13:33:21Z | |
dc.date.issued | 2015 | es_ES |
dc.identifier.issn | 2158-3226 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/95464 | |
dc.description.abstract | [EN] The most usual method to reduce undesirable enviromental noise levels during its transmission is the use of acoustic barriers. A novel type of acoustic barrier based on sound transmission through subwavelength slits is presented. This system consists of two rows of periodic repetition of vertical rigid pickets separated by a slit of subwavelength width and with a misalignment between them. Here, both the experimental and the numerical analyses are presented. The acoustic barrier proposed can be easily built and is frequency tunable. The results demonstrated that the proposed barrier can be tuned to mitigate a band noise without excesive barrier thickness. The use of this system as an environmental acoustic barrier has certain advantages with regard to the ones currently used both from the constructive and the acoustical point of view. | es_ES |
dc.description.sponsorship | This work was financially supported by the Spanish Ministry of Science and Innovation through project MAT2010-16879. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | American Institute of Physics | es_ES |
dc.relation.ispartof | AIP Advances | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Subwavelength slit | es_ES |
dc.subject | Acoustic barrier | es_ES |
dc.subject | Insertion loss | es_ES |
dc.subject | Noise Control | es_ES |
dc.subject.classification | FISICA APLICADA | es_ES |
dc.title | A tunable acoustic barrier based on periodic arrays of subwavelength slits | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1063/1.4921834 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MICINN//MAT2010-16879/ES/ONDAS MECANICAS EN PLACAS PERFORADAS. APLICACIONES TECNOLOGICAS: ADAPTADORES DE IMPEDANCIAS Y AISLAMIENTO ACUSTICO A RUIDO AEREO./ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada | es_ES |
dc.description.bibliographicCitation | Rubio Michavila, C.; Uris Martínez, A.; Candelas Valiente, P.; Belmar Ibáñez, F.; Gómez Lozano, V. (2015). A tunable acoustic barrier based on periodic arrays of subwavelength slits. AIP Advances. 5(5):571501-571506. https://doi.org/10.1063/1.4921834 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1063/1.4921834 | es_ES |
dc.description.upvformatpinicio | 571501 | es_ES |
dc.description.upvformatpfin | 571506 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 5 | es_ES |
dc.description.issue | 5 | es_ES |
dc.relation.pasarela | S\290470 | es_ES |
dc.contributor.funder | Ministerio de Ciencia e Innovación | es_ES |
dc.description.references | Hothersall, D. C., Chandler-Wilde, S. N., & Hajmirzae, M. N. (1991). Efficiency of single noise barriers. Journal of Sound and Vibration, 146(2), 303-322. doi:10.1016/0022-460x(91)90765-c | es_ES |
dc.description.references | Ishizuka, T., & Fujiwara, K. (2004). Performance of noise barriers with various edge shapes and acoustical conditions. Applied Acoustics, 65(2), 125-141. doi:10.1016/j.apacoust.2003.08.006 | es_ES |
dc.description.references | Fujiwara, K., Hothersall, D. C., & Kim, C. (1998). Noise barriers with reactive surfaces. Applied Acoustics, 53(4), 255-272. doi:10.1016/s0003-682x(97)00064-9 | es_ES |
dc.description.references | Watts, G. R., & Godfrey, N. S. (1999). Effects on roadside noise levels of sound absorptive materials in noise barriers. Applied Acoustics, 58(4), 385-402. doi:10.1016/s0003-682x(99)00007-9 | es_ES |
dc.description.references | Naderzadeh, M., Monazzam, M. R., Nassiri, P., & Fard, S. M. B. (2011). Application of perforated sheets to improve the efficiency of reactive profiled noise barriers. Applied Acoustics, 72(6), 393-398. doi:10.1016/j.apacoust.2011.01.002 | es_ES |
dc.description.references | Sánchez-Pérez, J. V., Caballero, D., Mártinez-Sala, R., Rubio, C., Sánchez-Dehesa, J., Meseguer, F., … Gálvez, F. (1998). Sound Attenuation by a Two-Dimensional Array of Rigid Cylinders. Physical Review Letters, 80(24), 5325-5328. doi:10.1103/physrevlett.80.5325 | es_ES |
dc.description.references | Sanchez-Perez, J. V., Rubio, C., Martinez-Sala, R., Sanchez-Grandia, R., & Gomez, V. (2002). Acoustic barriers based on periodic arrays of scatterers. Applied Physics Letters, 81(27), 5240-5242. doi:10.1063/1.1533112 | es_ES |
dc.description.references | Umnova, O., Attenborough, K., & Linton, C. M. (2006). Effects of porous covering on sound attenuation by periodic arrays of cylinders. The Journal of the Acoustical Society of America, 119(1), 278-284. doi:10.1121/1.2133715 | es_ES |
dc.description.references | Romero-García, V., Sánchez-Pérez, J. V., & Garcia-Raffi, L. M. (2011). Tunable wideband bandstop acoustic filter based on two-dimensional multiphysical phenomena periodic systems. Journal of Applied Physics, 110(1), 014904. doi:10.1063/1.3599886 | es_ES |
dc.description.references | Koussa, F., Defrance, J., Jean, P., & Blanc-Benon, P. (2013). Acoustical Efficiency of a Sonic Crystal Assisted Noise Barrier. Acta Acustica united with Acustica, 99(3), 399-409. doi:10.3813/aaa.918621 | es_ES |
dc.description.references | Van der Aa, B., & Forssén, J. (2014). Shape-optimal design of graded index sonic crystal formations using natural cubic splines. Applied Acoustics, 78, 98-111. doi:10.1016/j.apacoust.2013.11.002 | es_ES |
dc.description.references | Lu, M.-H., Liu, X.-K., Feng, L., Li, J., Huang, C.-P., Chen, Y.-F., … Ming, N.-B. (2007). Extraordinary Acoustic Transmission through a 1D Grating with Very Narrow Apertures. Physical Review Letters, 99(17). doi:10.1103/physrevlett.99.174301 | es_ES |
dc.description.references | Hou, B., Mei, J., Ke, M., Wen, W., Liu, Z., Shi, J., & Sheng, P. (2007). Tuning Fabry-Perot resonances via diffraction evanescent waves. Physical Review B, 76(5). doi:10.1103/physrevb.76.054303 | es_ES |
dc.description.references | Christensen, J., Martin-Moreno, L., & Garcia-Vidal, F. J. (2008). Theory of Resonant Acoustic Transmission through Subwavelength Apertures. Physical Review Letters, 101(1). doi:10.1103/physrevlett.101.014301 | es_ES |
dc.description.references | Estrada, H., Candelas, P., Uris, A., Belmar, F., García de Abajo, F. J., & Meseguer, F. (2008). Extraordinary Sound Screening in Perforated Plates. Physical Review Letters, 101(8). doi:10.1103/physrevlett.101.084302 | es_ES |
dc.description.references | Wood, R. W. (1935). Anomalous Diffraction Gratings. Physical Review, 48(12), 928-936. doi:10.1103/physrev.48.928 | es_ES |
dc.description.references | Estrada, H., Candelas, P., Uris, A., Belmar, F., Meseguer, F., & García de Abajo, F. J. (2008). Influence of the hole filling fraction on the ultrasonic transmission through plates with subwavelength aperture arrays. Applied Physics Letters, 93(1), 011907. doi:10.1063/1.2955825 | es_ES |
dc.description.references | Estrada, H., Candelas, P., Uris, A., Belmar, F., García de Abajo, F. J., & Meseguer, F. (2009). Influence of lattice symmetry on ultrasound transmission through plates with subwavelength aperture arrays. Applied Physics Letters, 95(5), 051906. doi:10.1063/1.3196330 | es_ES |
dc.description.references | Bell, J. S., Summers, I. R., Murray, A. R. J., Hendry, E., Sambles, J. R., & Hibbins, A. P. (2012). Low acoustic transmittance through a holey structure. Physical Review B, 85(21). doi:10.1103/physrevb.85.214305 | es_ES |
dc.description.references | Murray, A. R. J., Hendry, E., Summers, I. R., Sambles, J. R., & Hibbins, A. P. (2013). Control of the stop band of an acoustic double fishnet. The Journal of the Acoustical Society of America, 134(3), 1754-1759. doi:10.1121/1.4817898 | es_ES |
dc.description.references | Yang, Z., Dai, H. M., Chan, N. H., Ma, G. C., & Sheng, P. (2010). Acoustic metamaterial panels for sound attenuation in the 50–1000 Hz regime. Applied Physics Letters, 96(4), 041906. doi:10.1063/1.3299007 | es_ES |
dc.description.references | Naify, C. J., Chang, C.-M., McKnight, G., Scheulen, F., & Nutt, S. (2011). Membrane-type metamaterials: Transmission loss of multi-celled arrays. Journal of Applied Physics, 109(10), 104902. doi:10.1063/1.3583656 | es_ES |
dc.description.references | Fan, L., Chen, Z., Zhang, S., Ding, J., Li, X., & Zhang, H. (2015). An acoustic metamaterial composed of multi-layer membrane-coated perforated plates for low-frequency sound insulation. Applied Physics Letters, 106(15), 151908. doi:10.1063/1.4918374 | es_ES |
dc.description.references | Lee, K. J. B., Jung, M. K., & Lee, S. H. (2012). Highly tunable acoustic metamaterials based on a resonant tubular array. Physical Review B, 86(18). doi:10.1103/physrevb.86.184302 | es_ES |
dc.description.references | Quan, L., Zhong, X., Liu, X., Gong, X., & Johnson, P. A. (2014). Effective impedance boundary optimization and its contribution to dipole radiation and radiation pattern control. Nature Communications, 5(1). doi:10.1038/ncomms4188 | es_ES |
dc.description.references | Kim, S.-H., & Lee, S.-H. (2014). Air transparent soundproof window. AIP Advances, 4(11), 117123. doi:10.1063/1.4902155 | es_ES |
dc.description.references | Romero-García, V., Sánchez-Pérez, J. V., & Garcia-Raffi, L. M. (2011). Analysis of the wave propagation properties of a periodic array of rigid cylinders perpendicular to a finite impedance surface. EPL (Europhysics Letters), 96(4), 44003. doi:10.1209/0295-5075/96/44003 | es_ES |
dc.description.references | Gupta, A., Lim, K. M., & Chew, C. H. (2012). A quasi two-dimensional model for sound attenuation by the sonic crystals. The Journal of the Acoustical Society of America, 132(4), 2909-2914. doi:10.1121/1.4744930 | es_ES |
dc.description.references | Akiyama, K., Takano, K., Abe, Y., Tokuda, Y., & Hangyo, M. (2010). Optical transmission anomalies in a double-layered metallic slit array. Optics Express, 18(17), 17876. doi:10.1364/oe.18.017876 | es_ES |
dc.description.references | Liu, Z., & Jin, G. (2010). Acoustic transmission resonance and suppression through double-layer subwavelength hole arrays. Journal of Physics: Condensed Matter, 22(30), 305003. doi:10.1088/0953-8984/22/30/305003 | es_ES |