- -

A tunable acoustic barrier based on periodic arrays of subwavelength slits

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A tunable acoustic barrier based on periodic arrays of subwavelength slits

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Rubio Michavila, Constanza es_ES
dc.contributor.author Uris Martínez, Antonio es_ES
dc.contributor.author Candelas Valiente, Pilar es_ES
dc.contributor.author Belmar Ibáñez, Francisco es_ES
dc.contributor.author Gómez Lozano, Vicente es_ES
dc.date.accessioned 2018-01-24T13:33:21Z
dc.date.available 2018-01-24T13:33:21Z
dc.date.issued 2015 es_ES
dc.identifier.issn 2158-3226 es_ES
dc.identifier.uri http://hdl.handle.net/10251/95464
dc.description.abstract [EN] The most usual method to reduce undesirable enviromental noise levels during its transmission is the use of acoustic barriers. A novel type of acoustic barrier based on sound transmission through subwavelength slits is presented. This system consists of two rows of periodic repetition of vertical rigid pickets separated by a slit of subwavelength width and with a misalignment between them. Here, both the experimental and the numerical analyses are presented. The acoustic barrier proposed can be easily built and is frequency tunable. The results demonstrated that the proposed barrier can be tuned to mitigate a band noise without excesive barrier thickness. The use of this system as an environmental acoustic barrier has certain advantages with regard to the ones currently used both from the constructive and the acoustical point of view. es_ES
dc.description.sponsorship This work was financially supported by the Spanish Ministry of Science and Innovation through project MAT2010-16879. en_EN
dc.language Inglés es_ES
dc.publisher American Institute of Physics es_ES
dc.relation.ispartof AIP Advances es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Subwavelength slit es_ES
dc.subject Acoustic barrier es_ES
dc.subject Insertion loss es_ES
dc.subject Noise Control es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title A tunable acoustic barrier based on periodic arrays of subwavelength slits es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1063/1.4921834 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MAT2010-16879/ES/ONDAS MECANICAS EN PLACAS PERFORADAS. APLICACIONES TECNOLOGICAS: ADAPTADORES DE IMPEDANCIAS Y AISLAMIENTO ACUSTICO A RUIDO AEREO./ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.description.bibliographicCitation Rubio Michavila, C.; Uris Martínez, A.; Candelas Valiente, P.; Belmar Ibáñez, F.; Gómez Lozano, V. (2015). A tunable acoustic barrier based on periodic arrays of subwavelength slits. AIP Advances. 5(5):571501-571506. https://doi.org/10.1063/1.4921834 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1063/1.4921834 es_ES
dc.description.upvformatpinicio 571501 es_ES
dc.description.upvformatpfin 571506 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 5 es_ES
dc.description.issue 5 es_ES
dc.relation.pasarela S\290470 es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Hothersall, D. C., Chandler-Wilde, S. N., & Hajmirzae, M. N. (1991). Efficiency of single noise barriers. Journal of Sound and Vibration, 146(2), 303-322. doi:10.1016/0022-460x(91)90765-c es_ES
dc.description.references Ishizuka, T., & Fujiwara, K. (2004). Performance of noise barriers with various edge shapes and acoustical conditions. Applied Acoustics, 65(2), 125-141. doi:10.1016/j.apacoust.2003.08.006 es_ES
dc.description.references Fujiwara, K., Hothersall, D. C., & Kim, C. (1998). Noise barriers with reactive surfaces. Applied Acoustics, 53(4), 255-272. doi:10.1016/s0003-682x(97)00064-9 es_ES
dc.description.references Watts, G. R., & Godfrey, N. S. (1999). Effects on roadside noise levels of sound absorptive materials in noise barriers. Applied Acoustics, 58(4), 385-402. doi:10.1016/s0003-682x(99)00007-9 es_ES
dc.description.references Naderzadeh, M., Monazzam, M. R., Nassiri, P., & Fard, S. M. B. (2011). Application of perforated sheets to improve the efficiency of reactive profiled noise barriers. Applied Acoustics, 72(6), 393-398. doi:10.1016/j.apacoust.2011.01.002 es_ES
dc.description.references Sánchez-Pérez, J. V., Caballero, D., Mártinez-Sala, R., Rubio, C., Sánchez-Dehesa, J., Meseguer, F., … Gálvez, F. (1998). Sound Attenuation by a Two-Dimensional Array of Rigid Cylinders. Physical Review Letters, 80(24), 5325-5328. doi:10.1103/physrevlett.80.5325 es_ES
dc.description.references Sanchez-Perez, J. V., Rubio, C., Martinez-Sala, R., Sanchez-Grandia, R., & Gomez, V. (2002). Acoustic barriers based on periodic arrays of scatterers. Applied Physics Letters, 81(27), 5240-5242. doi:10.1063/1.1533112 es_ES
dc.description.references Umnova, O., Attenborough, K., & Linton, C. M. (2006). Effects of porous covering on sound attenuation by periodic arrays of cylinders. The Journal of the Acoustical Society of America, 119(1), 278-284. doi:10.1121/1.2133715 es_ES
dc.description.references Romero-García, V., Sánchez-Pérez, J. V., & Garcia-Raffi, L. M. (2011). Tunable wideband bandstop acoustic filter based on two-dimensional multiphysical phenomena periodic systems. Journal of Applied Physics, 110(1), 014904. doi:10.1063/1.3599886 es_ES
dc.description.references Koussa, F., Defrance, J., Jean, P., & Blanc-Benon, P. (2013). Acoustical Efficiency of a Sonic Crystal Assisted Noise Barrier. Acta Acustica united with Acustica, 99(3), 399-409. doi:10.3813/aaa.918621 es_ES
dc.description.references Van der Aa, B., & Forssén, J. (2014). Shape-optimal design of graded index sonic crystal formations using natural cubic splines. Applied Acoustics, 78, 98-111. doi:10.1016/j.apacoust.2013.11.002 es_ES
dc.description.references Lu, M.-H., Liu, X.-K., Feng, L., Li, J., Huang, C.-P., Chen, Y.-F., … Ming, N.-B. (2007). Extraordinary Acoustic Transmission through a 1D Grating with Very Narrow Apertures. Physical Review Letters, 99(17). doi:10.1103/physrevlett.99.174301 es_ES
dc.description.references Hou, B., Mei, J., Ke, M., Wen, W., Liu, Z., Shi, J., & Sheng, P. (2007). Tuning Fabry-Perot resonances via diffraction evanescent waves. Physical Review B, 76(5). doi:10.1103/physrevb.76.054303 es_ES
dc.description.references Christensen, J., Martin-Moreno, L., & Garcia-Vidal, F. J. (2008). Theory of Resonant Acoustic Transmission through Subwavelength Apertures. Physical Review Letters, 101(1). doi:10.1103/physrevlett.101.014301 es_ES
dc.description.references Estrada, H., Candelas, P., Uris, A., Belmar, F., García de Abajo, F. J., & Meseguer, F. (2008). Extraordinary Sound Screening in Perforated Plates. Physical Review Letters, 101(8). doi:10.1103/physrevlett.101.084302 es_ES
dc.description.references Wood, R. W. (1935). Anomalous Diffraction Gratings. Physical Review, 48(12), 928-936. doi:10.1103/physrev.48.928 es_ES
dc.description.references Estrada, H., Candelas, P., Uris, A., Belmar, F., Meseguer, F., & García de Abajo, F. J. (2008). Influence of the hole filling fraction on the ultrasonic transmission through plates with subwavelength aperture arrays. Applied Physics Letters, 93(1), 011907. doi:10.1063/1.2955825 es_ES
dc.description.references Estrada, H., Candelas, P., Uris, A., Belmar, F., García de Abajo, F. J., & Meseguer, F. (2009). Influence of lattice symmetry on ultrasound transmission through plates with subwavelength aperture arrays. Applied Physics Letters, 95(5), 051906. doi:10.1063/1.3196330 es_ES
dc.description.references Bell, J. S., Summers, I. R., Murray, A. R. J., Hendry, E., Sambles, J. R., & Hibbins, A. P. (2012). Low acoustic transmittance through a holey structure. Physical Review B, 85(21). doi:10.1103/physrevb.85.214305 es_ES
dc.description.references Murray, A. R. J., Hendry, E., Summers, I. R., Sambles, J. R., & Hibbins, A. P. (2013). Control of the stop band of an acoustic double fishnet. The Journal of the Acoustical Society of America, 134(3), 1754-1759. doi:10.1121/1.4817898 es_ES
dc.description.references Yang, Z., Dai, H. M., Chan, N. H., Ma, G. C., & Sheng, P. (2010). Acoustic metamaterial panels for sound attenuation in the 50–1000 Hz regime. Applied Physics Letters, 96(4), 041906. doi:10.1063/1.3299007 es_ES
dc.description.references Naify, C. J., Chang, C.-M., McKnight, G., Scheulen, F., & Nutt, S. (2011). Membrane-type metamaterials: Transmission loss of multi-celled arrays. Journal of Applied Physics, 109(10), 104902. doi:10.1063/1.3583656 es_ES
dc.description.references Fan, L., Chen, Z., Zhang, S., Ding, J., Li, X., & Zhang, H. (2015). An acoustic metamaterial composed of multi-layer membrane-coated perforated plates for low-frequency sound insulation. Applied Physics Letters, 106(15), 151908. doi:10.1063/1.4918374 es_ES
dc.description.references Lee, K. J. B., Jung, M. K., & Lee, S. H. (2012). Highly tunable acoustic metamaterials based on a resonant tubular array. Physical Review B, 86(18). doi:10.1103/physrevb.86.184302 es_ES
dc.description.references Quan, L., Zhong, X., Liu, X., Gong, X., & Johnson, P. A. (2014). Effective impedance boundary optimization and its contribution to dipole radiation and radiation pattern control. Nature Communications, 5(1). doi:10.1038/ncomms4188 es_ES
dc.description.references Kim, S.-H., & Lee, S.-H. (2014). Air transparent soundproof window. AIP Advances, 4(11), 117123. doi:10.1063/1.4902155 es_ES
dc.description.references Romero-García, V., Sánchez-Pérez, J. V., & Garcia-Raffi, L. M. (2011). Analysis of the wave propagation properties of a periodic array of rigid cylinders perpendicular to a finite impedance surface. EPL (Europhysics Letters), 96(4), 44003. doi:10.1209/0295-5075/96/44003 es_ES
dc.description.references Gupta, A., Lim, K. M., & Chew, C. H. (2012). A quasi two-dimensional model for sound attenuation by the sonic crystals. The Journal of the Acoustical Society of America, 132(4), 2909-2914. doi:10.1121/1.4744930 es_ES
dc.description.references Akiyama, K., Takano, K., Abe, Y., Tokuda, Y., & Hangyo, M. (2010). Optical transmission anomalies in a double-layered metallic slit array. Optics Express, 18(17), 17876. doi:10.1364/oe.18.017876 es_ES
dc.description.references Liu, Z., & Jin, G. (2010). Acoustic transmission resonance and suppression through double-layer subwavelength hole arrays. Journal of Physics: Condensed Matter, 22(30), 305003. doi:10.1088/0953-8984/22/30/305003 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem