- -

Screening for drought tolerance in cultivars of the ornamental genus Tagetes (Asteraceae)

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Screening for drought tolerance in cultivars of the ornamental genus Tagetes (Asteraceae)

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Cicevan, Raluca es_ES
dc.contributor.author Al Hassan, Mohamad es_ES
dc.contributor.author Sestras, Adriana F. es_ES
dc.contributor.author Prohens Tomás, Jaime es_ES
dc.contributor.author Vicente, Oscar es_ES
dc.contributor.author Sestras, Radu es_ES
dc.contributor.author Boscaiu, Monica es_ES
dc.date.accessioned 2018-02-06T08:29:43Z
dc.date.available 2018-02-06T08:29:43Z
dc.date.issued 2016 es_ES
dc.identifier.uri http://hdl.handle.net/10251/97002
dc.description.abstract [EN] Drought tolerance was evaluated in twelve cultivars of three ornamental Tagetes species (T. patula, T. tenuifolia and T. erecta). A stress treatment was performed by completely stopping watering of plants maintained in controlled greenhouse conditions. After three weeks, several plant growth parameters (stem length (SL), fresh weight (FW) and water content (WC)), photosynthetic pigments (chlorophylls and carotenoids (Car)), osmolytes (proline (Pro), glycine betaine (GB) and total soluble sugars (TSS)), an oxidative stress maker (malondialdehyde (MDA)) and antioxidants (total phenolic compounds (TPC) and total flavonoids (TF)) were measured. Considerable differences in the evaluated traits were found among the control and drought-stressed plants. Drought stress generally caused a marked reduction in plant growth and carotenoid pigments, and an increase in soluble solutes and oxidative stress. For most cultivars, proline levels in stressed plants increased between 30 and 70-fold compared to the corresponding controls. According to the different measured parameters, on average T. erecta proved to be more tolerant to drought than T. patula and T. tenuifolia. However, a considerable variation in the tolerance to drought was found within each species. The traits with greater association to drought tolerance as well as the most tolerant cultivars could be clearly identified in a principal components analysis (PCA). Overall, our results indicate that drought tolerant cultivars of Tagetes can be identified at early stages using a combination of plant growth and biochemical markers es_ES
dc.language Inglés es_ES
dc.publisher PeerJ es_ES
dc.relation.ispartof PeerJ es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Osmolytes es_ES
dc.subject Drought es_ES
dc.subject Antioxidants es_ES
dc.subject Growth es_ES
dc.subject Tagetes es_ES
dc.subject Pigments es_ES
dc.subject.classification GENETICA es_ES
dc.subject.classification BOTANICA es_ES
dc.subject.classification BIOQUIMICA Y BIOLOGIA MOLECULAR es_ES
dc.title Screening for drought tolerance in cultivars of the ornamental genus Tagetes (Asteraceae) es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.7717/peerj.2133 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ecosistemas Agroforestales - Departament d'Ecosistemes Agroforestals es_ES
dc.description.bibliographicCitation Cicevan, R.; Al Hassan, M.; Sestras, AF.; Prohens Tomás, J.; Vicente, O.; Sestras, R.; Boscaiu, M. (2016). Screening for drought tolerance in cultivars of the ornamental genus Tagetes (Asteraceae). PeerJ. 4. doi:10.7717/peerj.2133 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.7717/peerj.2133 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 4 es_ES
dc.identifier.eissn 2167-8359 es_ES
dc.identifier.pmid 27326384
dc.identifier.pmcid PMC4911946
dc.relation.pasarela S\324422 es_ES
dc.description.references Agastian, P., Kingsley, S. J., & Vivekanandan, M. (2000). Photosynthetica, 38(2), 287-290. doi:10.1023/a:1007266932623 es_ES
dc.description.references AL HASSAN, M., MARTÍNEZ FUERTES, M., RAMOS SÁNCHEZ, F. J., VICENTE, O., & BOSCAIU, M. (2015). Effects of Salt and Water Stress on Plant Growth and on Accumulation of Osmolytes and Antioxidant Compounds in Cherry Tomato. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 43(1). doi:10.15835/nbha.43.1.9793 es_ES
dc.description.references Apel, K., & Hirt, H. (2004). REACTIVE OXYGEN SPECIES: Metabolism, Oxidative Stress, and Signal Transduction. Annual Review of Plant Biology, 55(1), 373-399. doi:10.1146/annurev.arplant.55.031903.141701 es_ES
dc.description.references Ashraf, M., & Harris, P. J. C. (2004). Potential biochemical indicators of salinity tolerance in plants. Plant Science, 166(1), 3-16. doi:10.1016/j.plantsci.2003.10.024 es_ES
dc.description.references Ashraf, M., & Foolad, M. R. (2007). Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 59(2), 206-216. doi:10.1016/j.envexpbot.2005.12.006 es_ES
dc.description.references Bates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39(1), 205-207. doi:10.1007/bf00018060 es_ES
dc.description.references Bautista, I., Boscaiu, M., Lidón, A., Llinares, J. V., Lull, C., Donat, M. P., … Vicente, O. (2015). Environmentally induced changes in antioxidant phenolic compounds levels in wild plants. Acta Physiologiae Plantarum, 38(1). doi:10.1007/s11738-015-2025-2 es_ES
dc.description.references Bijanzadeh, E., & Emam, Y. (2010). Effect of Defoliation and Drought Stress on Yield Components and Chlorophyll Content of Wheat. Pakistan Journal of Biological Sciences, 13(14), 699-705. doi:10.3923/pjbs.2010.699.705 es_ES
dc.description.references Blainski, A., Lopes, G., & de Mello, J. (2013). Application and Analysis of the Folin Ciocalteu Method for the Determination of the Total Phenolic Content from Limonium Brasiliense L. Molecules, 18(6), 6852-6865. doi:10.3390/molecules18066852 es_ES
dc.description.references Borch, K., Miller, C., Brown, K. M., & Lynch, J. P. (2003). Improved Drought Tolerance in Marigold by Manipulation of Root Growth with Buffered-phosphorus Nutrition. HortScience, 38(2), 212-216. doi:10.21273/hortsci.38.2.212 es_ES
dc.description.references Boscaiu, M., Lull, C., Llinares, J., Vicente, O., & Boira, H. (2012). Proline as a biochemical marker in relation to the ecology of two halophytic Juncus species. Journal of Plant Ecology, 6(2), 177-186. doi:10.1093/jpe/rts017 es_ES
dc.description.references Chaves, M. M. (2004). Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture. Journal of Experimental Botany, 55(407), 2365-2384. doi:10.1093/jxb/erh269 es_ES
dc.description.references Chen, Z., Cuin, T. A., Zhou, M., Twomey, A., Naidu, B. P., & Shabala, S. (2007). Compatible solute accumulation and stress-mitigating effects in barley genotypes contrasting in their salt tolerance. Journal of Experimental Botany, 58(15-16), 4245-4255. doi:10.1093/jxb/erm284 es_ES
dc.description.references Cortés, A. J., Chavarro, C. M., Madriñán, S., This, D., & Blair, M. W. (2012). Molecular ecology and selection in the drought-related Asr gene polymorphisms in wild and cultivated common bean (Phaseolus vulgaris L.). BMC Genetics, 13(1), 58. doi:10.1186/1471-2156-13-58 es_ES
dc.description.references Del Rio, D., Stewart, A. J., & Pellegrini, N. (2005). A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutrition, Metabolism and Cardiovascular Diseases, 15(4), 316-328. doi:10.1016/j.numecd.2005.05.003 es_ES
dc.description.references DEMIRAL, T., & TURKAN, I. (2005). Comparative lipid peroxidation, antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance. Environmental and Experimental Botany, 53(3), 247-257. doi:10.1016/j.envexpbot.2004.03.017 es_ES
dc.description.references Di Ferdinando, M., Brunetti, C., Agati, G., & Tattini, M. (2014). Multiple functions of polyphenols in plants inhabiting unfavorable Mediterranean areas. Environmental and Experimental Botany, 103, 107-116. doi:10.1016/j.envexpbot.2013.09.012 es_ES
dc.description.references Di Ferdinando, M., Brunetti, C., Fini, A., & Tattini, M. (2011). Flavonoids as Antioxidants in Plants Under Abiotic Stresses. Abiotic Stress Responses in Plants, 159-179. doi:10.1007/978-1-4614-0634-1_9 es_ES
dc.description.references DuBois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric Method for Determination of Sugars and Related Substances. Analytical Chemistry, 28(3), 350-356. doi:10.1021/ac60111a017 es_ES
dc.description.references Farooq, M., Hussain, M., Wahid, A., & Siddique, K. H. M. (2012). Drought Stress in Plants: An Overview. Plant Responses to Drought Stress, 1-33. doi:10.1007/978-3-642-32653-0_1 es_ES
dc.description.references Fini, A., Brunetti, C., Di Ferdinando, M., Ferrini, F., & Tattini, M. (2011). Stress-induced flavonoid biosynthesis and the antioxidant machinery of plants. Plant Signaling & Behavior, 6(5), 709-711. doi:10.4161/psb.6.5.15069 es_ES
dc.description.references Gholami, M., Rahemi, M., & Rastegar, S. (2012). Use of rapid screening methods for detecting drought tolerant cultivars of fig (Ficus carica L.). Scientia Horticulturae, 143, 7-14. doi:10.1016/j.scienta.2012.05.012 es_ES
dc.description.references Giannakopoulos, C., Le Sager, P., Bindi, M., Moriondo, M., Kostopoulou, E., & Goodess, C. M. (2009). Climatic changes and associated impacts in the Mediterranean resulting from a 2 °C global warming. Global and Planetary Change, 68(3), 209-224. doi:10.1016/j.gloplacha.2009.06.001 es_ES
dc.description.references Gil, R., Bautista, I., Boscaiu, M., Lidon, A., Wankhade, S., Sanchez, H., … Vicente, O. (2014). Responses of five Mediterranean halophytes to seasonal changes in environmental conditions. AoB PLANTS, 6(0), plu049-plu049. doi:10.1093/aobpla/plu049 es_ES
dc.description.references Gil, R., Boscaiu, M., Lull, C., Bautista, I., Lidón, A., & Vicente, O. (2013). Are soluble carbohydrates ecologically relevant for salt tolerance in halophytes? Functional Plant Biology, 40(9), 805. doi:10.1071/fp12359 es_ES
dc.description.references GIL, R., LULL, C., BOSCAIU, M., BAUTISTA, I., LIDÓN, A., & VICENTE, O. (2011). Soluble Carbohydrates as Osmolytes in Several Halophytes from a Mediterranean Salt Marsh. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 39(2), 09. doi:10.15835/nbha3927176 es_ES
dc.description.references GHOLINEZHAD, E., DARVISHZADEH, R., & BERNOUSI, I. (2014). Evaluation of Drought Tolerance Indices for Selection of Confectionery Sunflower (Helianthus anuus L.) Landraces under Various Environmental Conditions. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 42(1). doi:10.15835/nbha4219394 es_ES
dc.description.references Grieve, C. M., & Grattan, S. R. (1983). Rapid assay for determination of water soluble quaternary ammonium compounds. Plant and Soil, 70(2), 303-307. doi:10.1007/bf02374789 es_ES
dc.description.references Halliwell, B. (2006). Reactive Species and Antioxidants. Redox Biology Is a Fundamental Theme of Aerobic Life. Plant Physiology, 141(2), 312-322. doi:10.1104/pp.106.077073 es_ES
dc.description.references Hanson, A. D., & Scott, N. A. (1980). Betaine Synthesis from Radioactive Precursors in Attached, Water-stressed Barley Leaves. Plant Physiology, 66(2), 342-348. doi:10.1104/pp.66.2.342 es_ES
dc.description.references Hare, P. D., Cress, W. A., & Van Staden, J. (1998). Dissecting the roles of osmolyte accumulation during stress. Plant, Cell and Environment, 21(6), 535-553. doi:10.1046/j.1365-3040.1998.00309.x es_ES
dc.description.references Henson, D. Y., Newman, S. E., & Hartley, D. E. (2006). Performance of Selected Herbaceous Annual Ornamentals Grown at Decreasing Levels of Irrigation. HortScience, 41(6), 1481-1486. doi:10.21273/hortsci.41.6.1481 es_ES
dc.description.references Hodges, D. M., DeLong, J. M., Forney, C. F., & Prange, R. K. (1999). Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta, 207(4), 604-611. doi:10.1007/s004250050524 es_ES
dc.description.references Hussain, I., Ashraf, M. A., Anwar, F., Rasheed, R., Niaz, M., & Wahid, A. (2013). Biochemical characterization of maize (Zea maysL.) for salt tolerance. Plant Biosystems - An International Journal Dealing with all Aspects of Plant Biology, 148(5), 1016-1026. doi:10.1080/11263504.2013.798369 es_ES
dc.description.references Ajmal Khan, M., Ungar, I. A., & Showalter, A. M. (2000). The effect of salinity on the growth, water status, and ion content of a leaf succulent perennial halophyte, Suaeda fruticosa (L.) Forssk. Journal of Arid Environments, 45(1), 73-84. doi:10.1006/jare.1999.0617 es_ES
dc.description.references Li, W., Gao, Y., Zhao, J., & Wang, Q. (2007). Phenolic, Flavonoid, and Lutein Ester Content and Antioxidant Activity of 11 Cultivars of Chinese Marigold. Journal of Agricultural and Food Chemistry, 55(21), 8478-8484. doi:10.1021/jf071696j es_ES
dc.description.references LICHTENTHALER, H. K., & WELLBURN, A. R. (1983). Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions, 11(5), 591-592. doi:10.1042/bst0110591 es_ES
dc.description.references Loggini, B., Scartazza, A., Brugnoli, E., & Navari-Izzo, F. (1999). Antioxidative Defense System, Pigment Composition, and Photosynthetic Efficiency in Two Wheat Cultivars Subjected to Drought. Plant Physiology, 119(3), 1091-1100. doi:10.1104/pp.119.3.1091 es_ES
dc.description.references Maity, N., Nema, N. K., Abedy, M. K., Sarkar, B. K., & Mukherjee, P. K. (2011). Exploring Tagetes erecta Linn flower for the elastase, hyaluronidase and MMP-1 inhibitory activity. Journal of Ethnopharmacology, 137(3), 1300-1305. doi:10.1016/j.jep.2011.07.064 es_ES
dc.description.references Mohamed, M. A.-H., Harris, P. J. C., & Henderson, J. (2000). In vitro selection and characterisation of a drought tolerant clone of Tagetes minuta. Plant Science, 159(2), 213-222. doi:10.1016/s0168-9452(00)00339-3 es_ES
dc.description.references Niu, G., Rodriguez, D. S., & Wang, Y.-T. (2006). Impact of Drought and Temperature on Growth and Leaf Gas Exchange of Six Bedding Plant Species Under Greenhouse Conditions. HortScience, 41(6), 1408-1411. doi:10.21273/hortsci.41.6.1408 es_ES
dc.description.references Parida, A. K., & Das, A. B. (2005). Salt tolerance and salinity effects on plants: a review. Ecotoxicology and Environmental Safety, 60(3), 324-349. doi:10.1016/j.ecoenv.2004.06.010 es_ES
dc.description.references Rhodes, D., & Hanson, A. D. (1993). Quaternary Ammonium and Tertiary Sulfonium Compounds in Higher Plants. Annual Review of Plant Physiology and Plant Molecular Biology, 44(1), 357-384. doi:10.1146/annurev.pp.44.060193.002041 es_ES
dc.description.references Rubio, J. L. (2009). Desertification and Water Scarcity as a Security Challenge in the Mediterranean. NATO Science for Peace and Security Series C: Environmental Security, 75-92. doi:10.1007/978-90-481-2526-5_4 es_ES
dc.description.references Ruddock, P. S., Charland, M., Ramirez, S., López, A., Neil Towers, G. H., Arnason, J. T., … Dillon, J.-A. R. (2011). Antimicrobial Activity of Flavonoids From Piper lanceaefolium and Other Colombian Medicinal Plants Against Antibiotic Susceptible and Resistant Strains of Neisseria gonorrhoeae. Sexually Transmitted Diseases, 38(2), 82-88. doi:10.1097/olq.0b013e3181f0bdbd es_ES
dc.description.references Sayyed, A. (2014). Influence of Sodium Chloride on Growth and Chemical Composition of Tagetes erecta. South Asian Journal of Life Sciences, 2(2), 29-32. doi:10.14737/journal.sajls/2014/2.2.29.32 es_ES
dc.description.references Schiop, S. T., Al Hassan, M., Sestras, A. F., Boscaiu, M., Sestras, R. E., & Vicente, O. (2015). Identification of Salt Stress Biomarkers in Romanian Carpathian Populations of Picea abies (L.) Karst. PLOS ONE, 10(8), e0135419. doi:10.1371/journal.pone.0135419 es_ES
dc.description.references Shinde, M., Kanase, K., Shilimkar, V., Undale, V., & Bhosale, A. (2009). Antinociceptive and Anti-Inflammatory Effects of Solvent Extracts of Tagetes erectus Linn (Asteraceae. Tropical Journal of Pharmaceutical Research, 8(4). doi:10.4314/tjpr.v8i4.45224 es_ES
dc.description.references Siddiqui, M., Al-Khaishany, M., Al-Qutami, M., Al-Whaibi, M., Grover, A., Ali, H., … Bukhari, N. (2015). Response of Different Genotypes of Faba Bean Plant to Drought Stress. International Journal of Molecular Sciences, 16(12), 10214-10227. doi:10.3390/ijms160510214 es_ES
dc.description.references Smirnoff, N., & Cumbes, Q. J. (1989). Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry, 28(4), 1057-1060. doi:10.1016/0031-9422(89)80182-7 es_ES
dc.description.references Sofo, A., Dichio, B., Xiloyannis, C., & Masia, A. (2004). Lipoxygenase activity and proline accumulation in leaves and roots of olive trees in response to drought stress. Physiologia Plantarum, 121(1), 58-65. doi:10.1111/j.0031-9317.2004.00294.x es_ES
dc.description.references Szabados, L., & Savouré, A. (2010). Proline: a multifunctional amino acid. Trends in Plant Science, 15(2), 89-97. doi:10.1016/j.tplants.2009.11.009 es_ES
dc.description.references Talukdar, D. (2013). Comparative morpho-physiological and biochemical responses of lentil and grass pea genotypes under water stress. Journal of Natural Science, Biology and Medicine, 4(2), 396. doi:10.4103/0976-9668.116983 es_ES
dc.description.references Van Breusegem, F., & Dat, J. F. (2006). Reactive Oxygen Species in Plant Cell Death: Figure 1. Plant Physiology, 141(2), 384-390. doi:10.1104/pp.106.078295 es_ES
dc.description.references Vasudevan, P., Kashyap, S., & Sharma, S. (1997). Tagetes: A multipurpose plant. Bioresource Technology, 62(1-2), 29-35. doi:10.1016/s0960-8524(97)00101-6 es_ES
dc.description.references Verbruggen, N., & Hermans, C. (2008). Proline accumulation in plants: a review. Amino Acids, 35(4), 753-759. doi:10.1007/s00726-008-0061-6 es_ES
dc.description.references Vicente, O., Boscaiu, M., Naranjo, M. Á., Estrelles, E., Bellés, J. M., & Soriano, P. (2004). Responses to salt stress in the halophyte Plantago crassifolia (Plantaginaceae). Journal of Arid Environments, 58(4), 463-481. doi:10.1016/j.jaridenv.2003.12.003 es_ES
dc.description.references Yang, L., Fountain, J., Wang, H., Ni, X., Ji, P., Lee, R., … Guo, B. (2015). Stress Sensitivity Is Associated with Differential Accumulation of Reactive Oxygen and Nitrogen Species in Maize Genotypes with Contrasting Levels of Drought Tolerance. International Journal of Molecular Sciences, 16(10), 24791-24819. doi:10.3390/ijms161024791 es_ES
dc.description.references Zhishen, J., Mengcheng, T., & Jianming, W. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 64(4), 555-559. doi:10.1016/s0308-8146(98)00102-2 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem