Mostrar el registro sencillo del ítem
dc.contributor.author | Cicevan, Raluca | es_ES |
dc.contributor.author | Al Hassan, Mohamad | es_ES |
dc.contributor.author | Sestras, Adriana F. | es_ES |
dc.contributor.author | Prohens Tomás, Jaime | es_ES |
dc.contributor.author | Vicente, Oscar | es_ES |
dc.contributor.author | Sestras, Radu | es_ES |
dc.contributor.author | Boscaiu, Monica | es_ES |
dc.date.accessioned | 2018-02-06T08:29:43Z | |
dc.date.available | 2018-02-06T08:29:43Z | |
dc.date.issued | 2016 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/97002 | |
dc.description.abstract | [EN] Drought tolerance was evaluated in twelve cultivars of three ornamental Tagetes species (T. patula, T. tenuifolia and T. erecta). A stress treatment was performed by completely stopping watering of plants maintained in controlled greenhouse conditions. After three weeks, several plant growth parameters (stem length (SL), fresh weight (FW) and water content (WC)), photosynthetic pigments (chlorophylls and carotenoids (Car)), osmolytes (proline (Pro), glycine betaine (GB) and total soluble sugars (TSS)), an oxidative stress maker (malondialdehyde (MDA)) and antioxidants (total phenolic compounds (TPC) and total flavonoids (TF)) were measured. Considerable differences in the evaluated traits were found among the control and drought-stressed plants. Drought stress generally caused a marked reduction in plant growth and carotenoid pigments, and an increase in soluble solutes and oxidative stress. For most cultivars, proline levels in stressed plants increased between 30 and 70-fold compared to the corresponding controls. According to the different measured parameters, on average T. erecta proved to be more tolerant to drought than T. patula and T. tenuifolia. However, a considerable variation in the tolerance to drought was found within each species. The traits with greater association to drought tolerance as well as the most tolerant cultivars could be clearly identified in a principal components analysis (PCA). Overall, our results indicate that drought tolerant cultivars of Tagetes can be identified at early stages using a combination of plant growth and biochemical markers | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | PeerJ | es_ES |
dc.relation.ispartof | PeerJ | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | Osmolytes | es_ES |
dc.subject | Drought | es_ES |
dc.subject | Antioxidants | es_ES |
dc.subject | Growth | es_ES |
dc.subject | Tagetes | es_ES |
dc.subject | Pigments | es_ES |
dc.subject.classification | GENETICA | es_ES |
dc.subject.classification | BOTANICA | es_ES |
dc.subject.classification | BIOQUIMICA Y BIOLOGIA MOLECULAR | es_ES |
dc.title | Screening for drought tolerance in cultivars of the ornamental genus Tagetes (Asteraceae) | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.7717/peerj.2133 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ecosistemas Agroforestales - Departament d'Ecosistemes Agroforestals | es_ES |
dc.description.bibliographicCitation | Cicevan, R.; Al Hassan, M.; Sestras, AF.; Prohens Tomás, J.; Vicente, O.; Sestras, R.; Boscaiu, M. (2016). Screening for drought tolerance in cultivars of the ornamental genus Tagetes (Asteraceae). PeerJ. 4. doi:10.7717/peerj.2133 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://doi.org/10.7717/peerj.2133 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 4 | es_ES |
dc.identifier.eissn | 2167-8359 | es_ES |
dc.identifier.pmid | 27326384 | |
dc.identifier.pmcid | PMC4911946 | |
dc.relation.pasarela | S\324422 | es_ES |
dc.description.references | Agastian, P., Kingsley, S. J., & Vivekanandan, M. (2000). Photosynthetica, 38(2), 287-290. doi:10.1023/a:1007266932623 | es_ES |
dc.description.references | AL HASSAN, M., MARTÍNEZ FUERTES, M., RAMOS SÁNCHEZ, F. J., VICENTE, O., & BOSCAIU, M. (2015). Effects of Salt and Water Stress on Plant Growth and on Accumulation of Osmolytes and Antioxidant Compounds in Cherry Tomato. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 43(1). doi:10.15835/nbha.43.1.9793 | es_ES |
dc.description.references | Apel, K., & Hirt, H. (2004). REACTIVE OXYGEN SPECIES: Metabolism, Oxidative Stress, and Signal Transduction. Annual Review of Plant Biology, 55(1), 373-399. doi:10.1146/annurev.arplant.55.031903.141701 | es_ES |
dc.description.references | Ashraf, M., & Harris, P. J. C. (2004). Potential biochemical indicators of salinity tolerance in plants. Plant Science, 166(1), 3-16. doi:10.1016/j.plantsci.2003.10.024 | es_ES |
dc.description.references | Ashraf, M., & Foolad, M. R. (2007). Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 59(2), 206-216. doi:10.1016/j.envexpbot.2005.12.006 | es_ES |
dc.description.references | Bates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39(1), 205-207. doi:10.1007/bf00018060 | es_ES |
dc.description.references | Bautista, I., Boscaiu, M., Lidón, A., Llinares, J. V., Lull, C., Donat, M. P., … Vicente, O. (2015). Environmentally induced changes in antioxidant phenolic compounds levels in wild plants. Acta Physiologiae Plantarum, 38(1). doi:10.1007/s11738-015-2025-2 | es_ES |
dc.description.references | Bijanzadeh, E., & Emam, Y. (2010). Effect of Defoliation and Drought Stress on Yield Components and Chlorophyll Content of Wheat. Pakistan Journal of Biological Sciences, 13(14), 699-705. doi:10.3923/pjbs.2010.699.705 | es_ES |
dc.description.references | Blainski, A., Lopes, G., & de Mello, J. (2013). Application and Analysis of the Folin Ciocalteu Method for the Determination of the Total Phenolic Content from Limonium Brasiliense L. Molecules, 18(6), 6852-6865. doi:10.3390/molecules18066852 | es_ES |
dc.description.references | Borch, K., Miller, C., Brown, K. M., & Lynch, J. P. (2003). Improved Drought Tolerance in Marigold by Manipulation of Root Growth with Buffered-phosphorus Nutrition. HortScience, 38(2), 212-216. doi:10.21273/hortsci.38.2.212 | es_ES |
dc.description.references | Boscaiu, M., Lull, C., Llinares, J., Vicente, O., & Boira, H. (2012). Proline as a biochemical marker in relation to the ecology of two halophytic Juncus species. Journal of Plant Ecology, 6(2), 177-186. doi:10.1093/jpe/rts017 | es_ES |
dc.description.references | Chaves, M. M. (2004). Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture. Journal of Experimental Botany, 55(407), 2365-2384. doi:10.1093/jxb/erh269 | es_ES |
dc.description.references | Chen, Z., Cuin, T. A., Zhou, M., Twomey, A., Naidu, B. P., & Shabala, S. (2007). Compatible solute accumulation and stress-mitigating effects in barley genotypes contrasting in their salt tolerance. Journal of Experimental Botany, 58(15-16), 4245-4255. doi:10.1093/jxb/erm284 | es_ES |
dc.description.references | Cortés, A. J., Chavarro, C. M., Madriñán, S., This, D., & Blair, M. W. (2012). Molecular ecology and selection in the drought-related Asr gene polymorphisms in wild and cultivated common bean (Phaseolus vulgaris L.). BMC Genetics, 13(1), 58. doi:10.1186/1471-2156-13-58 | es_ES |
dc.description.references | Del Rio, D., Stewart, A. J., & Pellegrini, N. (2005). A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutrition, Metabolism and Cardiovascular Diseases, 15(4), 316-328. doi:10.1016/j.numecd.2005.05.003 | es_ES |
dc.description.references | DEMIRAL, T., & TURKAN, I. (2005). Comparative lipid peroxidation, antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance. Environmental and Experimental Botany, 53(3), 247-257. doi:10.1016/j.envexpbot.2004.03.017 | es_ES |
dc.description.references | Di Ferdinando, M., Brunetti, C., Agati, G., & Tattini, M. (2014). Multiple functions of polyphenols in plants inhabiting unfavorable Mediterranean areas. Environmental and Experimental Botany, 103, 107-116. doi:10.1016/j.envexpbot.2013.09.012 | es_ES |
dc.description.references | Di Ferdinando, M., Brunetti, C., Fini, A., & Tattini, M. (2011). Flavonoids as Antioxidants in Plants Under Abiotic Stresses. Abiotic Stress Responses in Plants, 159-179. doi:10.1007/978-1-4614-0634-1_9 | es_ES |
dc.description.references | DuBois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric Method for Determination of Sugars and Related Substances. Analytical Chemistry, 28(3), 350-356. doi:10.1021/ac60111a017 | es_ES |
dc.description.references | Farooq, M., Hussain, M., Wahid, A., & Siddique, K. H. M. (2012). Drought Stress in Plants: An Overview. Plant Responses to Drought Stress, 1-33. doi:10.1007/978-3-642-32653-0_1 | es_ES |
dc.description.references | Fini, A., Brunetti, C., Di Ferdinando, M., Ferrini, F., & Tattini, M. (2011). Stress-induced flavonoid biosynthesis and the antioxidant machinery of plants. Plant Signaling & Behavior, 6(5), 709-711. doi:10.4161/psb.6.5.15069 | es_ES |
dc.description.references | Gholami, M., Rahemi, M., & Rastegar, S. (2012). Use of rapid screening methods for detecting drought tolerant cultivars of fig (Ficus carica L.). Scientia Horticulturae, 143, 7-14. doi:10.1016/j.scienta.2012.05.012 | es_ES |
dc.description.references | Giannakopoulos, C., Le Sager, P., Bindi, M., Moriondo, M., Kostopoulou, E., & Goodess, C. M. (2009). Climatic changes and associated impacts in the Mediterranean resulting from a 2 °C global warming. Global and Planetary Change, 68(3), 209-224. doi:10.1016/j.gloplacha.2009.06.001 | es_ES |
dc.description.references | Gil, R., Bautista, I., Boscaiu, M., Lidon, A., Wankhade, S., Sanchez, H., … Vicente, O. (2014). Responses of five Mediterranean halophytes to seasonal changes in environmental conditions. AoB PLANTS, 6(0), plu049-plu049. doi:10.1093/aobpla/plu049 | es_ES |
dc.description.references | Gil, R., Boscaiu, M., Lull, C., Bautista, I., Lidón, A., & Vicente, O. (2013). Are soluble carbohydrates ecologically relevant for salt tolerance in halophytes? Functional Plant Biology, 40(9), 805. doi:10.1071/fp12359 | es_ES |
dc.description.references | GIL, R., LULL, C., BOSCAIU, M., BAUTISTA, I., LIDÓN, A., & VICENTE, O. (2011). Soluble Carbohydrates as Osmolytes in Several Halophytes from a Mediterranean Salt Marsh. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 39(2), 09. doi:10.15835/nbha3927176 | es_ES |
dc.description.references | GHOLINEZHAD, E., DARVISHZADEH, R., & BERNOUSI, I. (2014). Evaluation of Drought Tolerance Indices for Selection of Confectionery Sunflower (Helianthus anuus L.) Landraces under Various Environmental Conditions. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 42(1). doi:10.15835/nbha4219394 | es_ES |
dc.description.references | Grieve, C. M., & Grattan, S. R. (1983). Rapid assay for determination of water soluble quaternary ammonium compounds. Plant and Soil, 70(2), 303-307. doi:10.1007/bf02374789 | es_ES |
dc.description.references | Halliwell, B. (2006). Reactive Species and Antioxidants. Redox Biology Is a Fundamental Theme of Aerobic Life. Plant Physiology, 141(2), 312-322. doi:10.1104/pp.106.077073 | es_ES |
dc.description.references | Hanson, A. D., & Scott, N. A. (1980). Betaine Synthesis from Radioactive Precursors in Attached, Water-stressed Barley Leaves. Plant Physiology, 66(2), 342-348. doi:10.1104/pp.66.2.342 | es_ES |
dc.description.references | Hare, P. D., Cress, W. A., & Van Staden, J. (1998). Dissecting the roles of osmolyte accumulation during stress. Plant, Cell and Environment, 21(6), 535-553. doi:10.1046/j.1365-3040.1998.00309.x | es_ES |
dc.description.references | Henson, D. Y., Newman, S. E., & Hartley, D. E. (2006). Performance of Selected Herbaceous Annual Ornamentals Grown at Decreasing Levels of Irrigation. HortScience, 41(6), 1481-1486. doi:10.21273/hortsci.41.6.1481 | es_ES |
dc.description.references | Hodges, D. M., DeLong, J. M., Forney, C. F., & Prange, R. K. (1999). Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta, 207(4), 604-611. doi:10.1007/s004250050524 | es_ES |
dc.description.references | Hussain, I., Ashraf, M. A., Anwar, F., Rasheed, R., Niaz, M., & Wahid, A. (2013). Biochemical characterization of maize (Zea maysL.) for salt tolerance. Plant Biosystems - An International Journal Dealing with all Aspects of Plant Biology, 148(5), 1016-1026. doi:10.1080/11263504.2013.798369 | es_ES |
dc.description.references | Ajmal Khan, M., Ungar, I. A., & Showalter, A. M. (2000). The effect of salinity on the growth, water status, and ion content of a leaf succulent perennial halophyte, Suaeda fruticosa (L.) Forssk. Journal of Arid Environments, 45(1), 73-84. doi:10.1006/jare.1999.0617 | es_ES |
dc.description.references | Li, W., Gao, Y., Zhao, J., & Wang, Q. (2007). Phenolic, Flavonoid, and Lutein Ester Content and Antioxidant Activity of 11 Cultivars of Chinese Marigold. Journal of Agricultural and Food Chemistry, 55(21), 8478-8484. doi:10.1021/jf071696j | es_ES |
dc.description.references | LICHTENTHALER, H. K., & WELLBURN, A. R. (1983). Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions, 11(5), 591-592. doi:10.1042/bst0110591 | es_ES |
dc.description.references | Loggini, B., Scartazza, A., Brugnoli, E., & Navari-Izzo, F. (1999). Antioxidative Defense System, Pigment Composition, and Photosynthetic Efficiency in Two Wheat Cultivars Subjected to Drought. Plant Physiology, 119(3), 1091-1100. doi:10.1104/pp.119.3.1091 | es_ES |
dc.description.references | Maity, N., Nema, N. K., Abedy, M. K., Sarkar, B. K., & Mukherjee, P. K. (2011). Exploring Tagetes erecta Linn flower for the elastase, hyaluronidase and MMP-1 inhibitory activity. Journal of Ethnopharmacology, 137(3), 1300-1305. doi:10.1016/j.jep.2011.07.064 | es_ES |
dc.description.references | Mohamed, M. A.-H., Harris, P. J. C., & Henderson, J. (2000). In vitro selection and characterisation of a drought tolerant clone of Tagetes minuta. Plant Science, 159(2), 213-222. doi:10.1016/s0168-9452(00)00339-3 | es_ES |
dc.description.references | Niu, G., Rodriguez, D. S., & Wang, Y.-T. (2006). Impact of Drought and Temperature on Growth and Leaf Gas Exchange of Six Bedding Plant Species Under Greenhouse Conditions. HortScience, 41(6), 1408-1411. doi:10.21273/hortsci.41.6.1408 | es_ES |
dc.description.references | Parida, A. K., & Das, A. B. (2005). Salt tolerance and salinity effects on plants: a review. Ecotoxicology and Environmental Safety, 60(3), 324-349. doi:10.1016/j.ecoenv.2004.06.010 | es_ES |
dc.description.references | Rhodes, D., & Hanson, A. D. (1993). Quaternary Ammonium and Tertiary Sulfonium Compounds in Higher Plants. Annual Review of Plant Physiology and Plant Molecular Biology, 44(1), 357-384. doi:10.1146/annurev.pp.44.060193.002041 | es_ES |
dc.description.references | Rubio, J. L. (2009). Desertification and Water Scarcity as a Security Challenge in the Mediterranean. NATO Science for Peace and Security Series C: Environmental Security, 75-92. doi:10.1007/978-90-481-2526-5_4 | es_ES |
dc.description.references | Ruddock, P. S., Charland, M., Ramirez, S., López, A., Neil Towers, G. H., Arnason, J. T., … Dillon, J.-A. R. (2011). Antimicrobial Activity of Flavonoids From Piper lanceaefolium and Other Colombian Medicinal Plants Against Antibiotic Susceptible and Resistant Strains of Neisseria gonorrhoeae. Sexually Transmitted Diseases, 38(2), 82-88. doi:10.1097/olq.0b013e3181f0bdbd | es_ES |
dc.description.references | Sayyed, A. (2014). Influence of Sodium Chloride on Growth and Chemical Composition of Tagetes erecta. South Asian Journal of Life Sciences, 2(2), 29-32. doi:10.14737/journal.sajls/2014/2.2.29.32 | es_ES |
dc.description.references | Schiop, S. T., Al Hassan, M., Sestras, A. F., Boscaiu, M., Sestras, R. E., & Vicente, O. (2015). Identification of Salt Stress Biomarkers in Romanian Carpathian Populations of Picea abies (L.) Karst. PLOS ONE, 10(8), e0135419. doi:10.1371/journal.pone.0135419 | es_ES |
dc.description.references | Shinde, M., Kanase, K., Shilimkar, V., Undale, V., & Bhosale, A. (2009). Antinociceptive and Anti-Inflammatory Effects of Solvent Extracts of Tagetes erectus Linn (Asteraceae. Tropical Journal of Pharmaceutical Research, 8(4). doi:10.4314/tjpr.v8i4.45224 | es_ES |
dc.description.references | Siddiqui, M., Al-Khaishany, M., Al-Qutami, M., Al-Whaibi, M., Grover, A., Ali, H., … Bukhari, N. (2015). Response of Different Genotypes of Faba Bean Plant to Drought Stress. International Journal of Molecular Sciences, 16(12), 10214-10227. doi:10.3390/ijms160510214 | es_ES |
dc.description.references | Smirnoff, N., & Cumbes, Q. J. (1989). Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry, 28(4), 1057-1060. doi:10.1016/0031-9422(89)80182-7 | es_ES |
dc.description.references | Sofo, A., Dichio, B., Xiloyannis, C., & Masia, A. (2004). Lipoxygenase activity and proline accumulation in leaves and roots of olive trees in response to drought stress. Physiologia Plantarum, 121(1), 58-65. doi:10.1111/j.0031-9317.2004.00294.x | es_ES |
dc.description.references | Szabados, L., & Savouré, A. (2010). Proline: a multifunctional amino acid. Trends in Plant Science, 15(2), 89-97. doi:10.1016/j.tplants.2009.11.009 | es_ES |
dc.description.references | Talukdar, D. (2013). Comparative morpho-physiological and biochemical responses of lentil and grass pea genotypes under water stress. Journal of Natural Science, Biology and Medicine, 4(2), 396. doi:10.4103/0976-9668.116983 | es_ES |
dc.description.references | Van Breusegem, F., & Dat, J. F. (2006). Reactive Oxygen Species in Plant Cell Death: Figure 1. Plant Physiology, 141(2), 384-390. doi:10.1104/pp.106.078295 | es_ES |
dc.description.references | Vasudevan, P., Kashyap, S., & Sharma, S. (1997). Tagetes: A multipurpose plant. Bioresource Technology, 62(1-2), 29-35. doi:10.1016/s0960-8524(97)00101-6 | es_ES |
dc.description.references | Verbruggen, N., & Hermans, C. (2008). Proline accumulation in plants: a review. Amino Acids, 35(4), 753-759. doi:10.1007/s00726-008-0061-6 | es_ES |
dc.description.references | Vicente, O., Boscaiu, M., Naranjo, M. Á., Estrelles, E., Bellés, J. M., & Soriano, P. (2004). Responses to salt stress in the halophyte Plantago crassifolia (Plantaginaceae). Journal of Arid Environments, 58(4), 463-481. doi:10.1016/j.jaridenv.2003.12.003 | es_ES |
dc.description.references | Yang, L., Fountain, J., Wang, H., Ni, X., Ji, P., Lee, R., … Guo, B. (2015). Stress Sensitivity Is Associated with Differential Accumulation of Reactive Oxygen and Nitrogen Species in Maize Genotypes with Contrasting Levels of Drought Tolerance. International Journal of Molecular Sciences, 16(10), 24791-24819. doi:10.3390/ijms161024791 | es_ES |
dc.description.references | Zhishen, J., Mengcheng, T., & Jianming, W. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 64(4), 555-559. doi:10.1016/s0308-8146(98)00102-2 | es_ES |