- -

Optimization of the conditions for production of synthetic seeds by encapsulation of axillary buds derived from minituber sprouts in potato (Solanum tuberosum)

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Optimization of the conditions for production of synthetic seeds by encapsulation of axillary buds derived from minituber sprouts in potato (Solanum tuberosum)

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Ghambarali, Saeed es_ES
dc.contributor.author Abdollahi, Mohammad Reza es_ES
dc.contributor.author Zolnorian, Haidar es_ES
dc.contributor.author Moosavi, Sayyed Saeed es_ES
dc.contributor.author Seguí-Simarro, Jose M. es_ES
dc.date.accessioned 2018-02-06T08:33:56Z
dc.date.available 2018-02-06T08:33:56Z
dc.date.issued 2016 es_ES
dc.identifier.issn 0167-6857 es_ES
dc.identifier.uri http://hdl.handle.net/10251/97042
dc.description.abstract [EN] Synthetic seed technology is a convenient alternative to conventional multiplication in potato. In this work, we studied and optimized the process of alginate encapsulation of axillary buds derived from potato minituber sprouts (PMSs). We assayed different concentrations of sodium alginate, CaCl2 and matrix culture media, different explant sizes, different concentrations of 24-epibrassinolide (EBr) applied at different stages of the encapsulation process, different planting substrates and different cold storage periods in order to determine the best conditions for encapsulation in cvs. Sante and Agria. The conditions that resulted in the greatest regrowth rates and speed in both cultivars involved the choice of 2 3 mmlong buds, a 2 days pre-culture of buds in culture medium supplemented with 10-6 M EBr, encapsulation in 3 % sodium alginate with 1 % CaCl2 and full-strength MS culture medium, regrowth in solid MS culture medium and then transfer to coco peat (coir fiber pith) for conversion into plantlets. We also found that buds encapsulated under these conditions maintained the initial viability rates for up to 120 days in Sante and 90 days in Agria , although regrowth speed decreased after 60 days in both cultivars. We demonstrate the possibility of producing synthetic seeds efficiently using axillary buds derived from PMSs. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Plant Cell Tissue and Organ Culture (PCTOC) es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Artificial seed es_ES
dc.subject Alginate es_ES
dc.subject Coco peat es_ES
dc.subject 24-Epibrassinolide es_ES
dc.subject Germplasm storage es_ES
dc.subject Synseed es_ES
dc.subject.classification GENETICA es_ES
dc.title Optimization of the conditions for production of synthetic seeds by encapsulation of axillary buds derived from minituber sprouts in potato (Solanum tuberosum) es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11240-016-1013-6 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia es_ES
dc.description.bibliographicCitation Ghambarali, S.; Abdollahi, MR.; Zolnorian, H.; Moosavi, SS.; Seguí-Simarro, JM. (2016). Optimization of the conditions for production of synthetic seeds by encapsulation of axillary buds derived from minituber sprouts in potato (Solanum tuberosum). Plant Cell Tissue and Organ Culture (PCTOC). 126(3):449-458. doi:10.1007/s11240-016-1013-6 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1007/s11240-016-1013-6 es_ES
dc.description.upvformatpinicio 449 es_ES
dc.description.upvformatpfin 458 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 126 es_ES
dc.description.issue 3 es_ES
dc.relation.pasarela S\318743 es_ES
dc.description.references Adriani M, Piccioni E, Standardi A (2000) Effect of different treatments on the conversion of ‘Hayward’ kiwifruit synthetic seeds to whole plants following encapsulation of in vitro-derived buds. N Z J Crop Hortic Sci 28:59–67 es_ES
dc.description.references Ahmad N, Anis M (2010) Direct plant regeneration from encapsulated nodal segments of Vitex negundo. Biol Plant 54:748–752 es_ES
dc.description.references Azpeitia A, Chan JL, Saenz L, Oropeza C (2003) Effect of 22(S),23(S)-homobrassinolide on somatic embryogenesis in plumule explants of Cocos nucifera (L.) cultured in vitro. J Hortic Sci Biotech 78:591–596 es_ES
dc.description.references Brosa C (1999) Biological effects of brassinosteroids. Crit Rev Biochem Mol Biol 34:339–358 es_ES
dc.description.references Bustam S, Sinniah UR, Kadir MA, Zaman FQ, Subramaniam S (2012) Selection of optimal stage for protocorm-like bodies and production of artificial seeds for direct regeneration on different media and short term storage of Dendrobium Shavin White. Plant Growth Regul 69:215–224 es_ES
dc.description.references Corral-Martínez P, Seguí-Simarro JM (2014) Refining the method for eggplant microspore culture: effect of abscisic acid, epibrassinolide, polyethylene glycol, naphthaleneacetic acid, 6-benzylaminopurine and arabinogalactan proteins. Euphytica 195:369–382 es_ES
dc.description.references Divi UK, Rahman T, Krishna P (2010) Brassinosteroid-mediated stress tolerance in Arabidopsis shows interactions with abscisic acid, ethylene and salicylic acid pathways. BMC Plant Biol 10:151 es_ES
dc.description.references Duncan DB (1955) Multiple range and multiple F tests. Biometrics 11:1–42 es_ES
dc.description.references Estrada R, Tovar P, Dodds JH (1986) Induction of in vitro tubers in a broad range of potato genotypes. Plant Cell Tissue Organ Cult 7:3–10 es_ES
dc.description.references Faisal M, Anis M (2007) Regeneration of plants from alginate-encapsulated shoots of Tylophora indica (Burm. f.) Merrill, an endangered medicinal plant. J Hortic Sci Biotechnol 82:351–354 es_ES
dc.description.references Fujioka S, Yokota T (2003) Biosynthesis and metabolism of brassinosteroids. Ann Rev Plant Biol 54:137–164 es_ES
dc.description.references Gantait S, Kundu S, Ali N, Sahu NC (2015) Synthetic seed production of medicinal plants: a review on influence of explants, encapsulation agent and matrix. Acta Physiol Plant 37:1–12 es_ES
dc.description.references Grove MD, Spencer GF, Rohwedder WK, Mandava N, Worley JF, Warthen JD, Steffens GL, Flippenanderson JL, Cook JC (1979) Brassinolide, a plant growth-promoting steroid isolated from Brassica napus pollen. Nature 281:216–217 es_ES
dc.description.references Hung CD, Trueman SJ (2012a) Alginate encapsulation of shoot tips and nodal segments for short-term storage and distribution of the eucalypt Corymbia torelliana × C. citriodora. Acta Physiol Plant 34:117–128 es_ES
dc.description.references Hung CD, Trueman SJ (2012b) Preservation of encapsulated shoot tips and nodes of the tropical hardwoods Corymbia torelliana × C. citriodora and Khaya senegalensis. Plant Cell, Tissue Organ Cult 109:341–352 es_ES
dc.description.references Jones ED (1988) A current assessment of in vitro culture and other rapid multiplication methods in North America and Europe. Am Potato J 65:209–220 es_ES
dc.description.references Kagale S, Divi UK, Krochko JE, Keller WA, Krishna P (2007) Brassinosteroid confers tolerance in Arabidopsis thaliana and Brassica napus to a range of abiotic stresses. Planta 225:353–364 es_ES
dc.description.references Kitto SL, Janick J (1982) Polyox as an artificial seed coat for asexual embryos. HortScience 17:488 es_ES
dc.description.references Larkin PJ, Davies PA, Tanner GJ (1988) Nurse culture of low numbers of Medicago and Nicotiana protoplasts using calcium alginate beads. Plant Sci 58:203–210 es_ES
dc.description.references Leclerc Y, Donnelly DJ, Coleman WK, King RR (1995) Microtuber dormancy in three potato cultivars. Am Potato J 72:215–223 es_ES
dc.description.references Machii H, Yamanouchi H (1993) Growth of mulberry synthetic seeds on vermiculite, sand and soil media. J Seric Sci Jpn 62:85–87 es_ES
dc.description.references Maguire JD (1962) Speed of germination—aid in selection ane evaluation for seedling emergence and vigor. Crop Sci 2:176–177 es_ES
dc.description.references Micheli M, Pellegrino S, Piccioni E, Standardi A (2002) Effects of double encapsulation and coating on synthetic seed conversion in M.26 apple rootstock. J Microencapsul 19:347–356 es_ES
dc.description.references Murashige T (1977) Plant cell and organ cultures as horticultural practices. Acta Hortic 78:17–30 es_ES
dc.description.references Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–479 es_ES
dc.description.references Naik PS, Karihaloo JL (2007) Micropropagation for production of quality potato seed in Asia-pacific. Asia-Pacific Consortium on Agricultural Biotechnology, New Delhi es_ES
dc.description.references Naik PS, Sarkar D (1997) Influence of light-induced greening on storage of potato microtubers. Biol Plant 39:31–34 es_ES
dc.description.references Nakashita H, Yasuda M, Nitta T, Asami T, Fujioka S, Arai Y, Sekimata K, Takatsuto S, Yamaguchi I, Yoshida S (2003) Brassinosteroid functions in a broad range of disease resistance in tobacco and rice. Plant J 33:887–898 es_ES
dc.description.references Nassar KAM, Kubow S, Donnelly JD (2015) Somatic Embryogenesis for potato (Solanum tuberosum L.) improvement. In: Li X-Q, Donnelly JD, Jensen GT (eds) Somatic genome manipulation: advances, methods, and applications. Springer, New York, pp 169–197 es_ES
dc.description.references Nuñez M, Siqueira WJ, Hernandez M, Zullo MAT, Robaina C, Coll F (2004) Effect of spirostane analogues of brassinosteroids on callus formation and plant regeneration in lettuce (Lactuca sativa). Plant Cell Tissue Organ Cult 78:97–99 es_ES
dc.description.references Nyende AB, Schittenhelm S, Mix-Wagner G, Greef J-M (2003) Production, storability, and regeneration of shoot tips of potato (Solanum tuberosum L.) encapsulated in calcium alginate hollow beads. In Vitro Cell Dev Biol Plant 39:540–544 es_ES
dc.description.references Oh MH, Clouse SD (1998) Brassinolide affects the rate of cell division in isolated leaf protoplasts of Petunia hybrida. Plant Cell Rep 17:921–924 es_ES
dc.description.references Parveen S, Shahzad A (2014) Encapsulation of nodal segments of Cassia angustifolia Vahl. for short-term storage and germplasm exchange. Acta Physiol Plant 36(3):635–640 es_ES
dc.description.references Pullman GS, Zhang Y, Phan BH (2003) Brassinolide improves embryogenic tissue initiation in conifers and rice. Plant Cell Rep 22:96–104 es_ES
dc.description.references Rai MK, Asthana P, Singh SK, Jaiswal VS, Jaiswal U (2009) The encapsulation technology in fruit plants—a review. Biotechnol Adv 27:671–679 es_ES
dc.description.references Redenbaugh K, Paasch BD, Nichol JW, Kossler ME, Viss PR, Walker KA (1986) Somatic seeds: encapsulation of asexual plant embryos. Nat Biotechnol 4:797–801 es_ES
dc.description.references Rihan HZ, Al-Issawi M, Burchett S, Fuller MP (2011) Encapsulation of cauliflower (Brassica oleracea var botrytis) microshoots as artificial seeds and their conversion and growth in commercial substrates. Plant Cell Tissue Organ Cult 107:243–250 es_ES
dc.description.references Saha S, Sengupta C, Ghosh P (2015) Encapsulation, short-term storage, conservation and molecular analysis to assess genetic stability in alginate-encapsulated microshoots of Ocimum kilimandscharicum Guerke. Plant Cell Tissue Organ Cult 120:519–530 es_ES
dc.description.references Sarkar D, Naik PS (1997) Nutrient-encapsulation of potato nodal segments for germplasm exchange and distribution. Biol Plant 40:285–290 es_ES
dc.description.references Sarkar D, Naik PS (1998) Synseeds in potato: an investigation using nutrient-encapsulated in vitro nodal segments. Sci Hortic 73:179–184 es_ES
dc.description.references Sasaki H (2002) Brassinolide promotes adventitious shoot regeneration from cauliflower hypocotyl segments. Plant Cell Tissue Organ Cult 71:111–116 es_ES
dc.description.references Schafer-Menuhr A, Mix-Wagner G, Vorlop K (2003) Regeneration of plants from cell suspension cultures and encapsulated cell suspension cultures of Solanum tuberosum L. cv. Clarissa. Landbauforsch Völkenrode 53:53–59 es_ES
dc.description.references Sharma S, Shahzad A (2012) Encapsulation technology for short-term storage and conservation of a woody climber, Decalepis hamiltonii Wight and Arn. Plant Cell Tissue Organ Cult 111:191–198 es_ES
dc.description.references Sharma SK, Bryan GJ, Winfield MO, Millam S (2007) Stability of potato (Solanum tuberosum L.) plants regenerated via somatic embryos, axillary bud proliferated shoots, microtubers and true potato seeds: a comparative phenotypic, cytogenetic and molecular assessment. Planta 226:1449–1458 es_ES
dc.description.references Sharma S, Shahzad A, Mahmood S, Saeed T (2014) High-frequency clonal propagation, encapsulation of nodal segments for short-term storage and germplasm exchange of Ficus carica L. Trees 29:345–353 es_ES
dc.description.references Shenoy VB, Vasil IK (1992) Biochemical and molecular analysis of plants derived from embryogenic tissue cultures of napier grass (Pennisetum purpureum K. Schum). Theor Appl Genet 83:947–955 es_ES
dc.description.references Srivastava V, Khan SA, Banerjee S (2009) An evaluation of genetic fidelity of encapsulated microshoots of the medicinal plant: Cineraria maritima following six months of storage. Plant Cell Tissue Organ Cult 99:193–198 es_ES
dc.description.references Teixeira AS, González-Benito ME, Molina-García AD (2014) Determination of glassy state by cryo-SEM and DSC in cryopreservation of mint shoot tips by encapsulation–dehydration. Plant Cell Tissue Organ Cult 119:269–280 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem