- -

Giant magnetoimpedance effect in surface modified CoFeMoSiB amorphous ribbons

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Giant magnetoimpedance effect in surface modified CoFeMoSiB amorphous ribbons

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Cerdeira, M.A. es_ES
dc.contributor.author Kurlyandskaya, G.V. es_ES
dc.contributor.author Fernandez, A. es_ES
dc.contributor.author Tejedor, M. es_ES
dc.contributor.author García Miquel, Ángel Héctor es_ES
dc.date.accessioned 2018-02-12T13:48:03Z
dc.date.available 2018-02-12T13:48:03Z
dc.date.issued 2003 es_ES
dc.identifier.issn 0256-307X es_ES
dc.identifier.uri http://hdl.handle.net/10251/97734
dc.description.abstract [EN] Thin magnetic Fe layers in thickness of 10-240 nm were deposited onto a wheel surface of CoFeMoSiB amorphous ribbons to check our concept of a new type of heterogeneous magnetoimpedance materials formed by two different magnetic parts. The presence of an additional iron layer modifies the magnetoimpedance response of the composite material and leads to increase of the magnetoimpedance ratio from 330 to 345% at a frequency of 3.5 MHz. Two possible mechanisms are discussed for explanation to the observed behaviour. Modification of the surface properties of the amorphous ribbons may have certain potential for technological applications. es_ES
dc.language Inglés es_ES
dc.publisher IOP Publishing es_ES
dc.relation.ispartof Chinese Physics Letters es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Giant magnetoimpedance effect in surface modified CoFeMoSiB amorphous ribbons es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1088/0256-307X/20/12/045 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.description.bibliographicCitation Cerdeira, M.; Kurlyandskaya, G.; Fernandez, A.; Tejedor, M.; García Miquel, ÁH. (2003). Giant magnetoimpedance effect in surface modified CoFeMoSiB amorphous ribbons. Chinese Physics Letters. 20(12):2246-2249. doi:10.1088/0256-307X/20/12/045 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1088/0256-307X/20/12/045 es_ES
dc.description.upvformatpinicio 2246 es_ES
dc.description.upvformatpfin 2249 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 20 es_ES
dc.description.issue 12 es_ES
dc.relation.pasarela S\24474 es_ES
dc.description.references Beach, R. S., & Berkowitz, A. E. (1994). Giant magnetic field dependent impedance of amorphous FeCoSiB wire. Applied Physics Letters, 64(26), 3652-3654. doi:10.1063/1.111170 es_ES
dc.description.references Kaneo Mohri, Tsuyoshi Uchiyama, & Panina, L. V. (1997). Recent advances of micro magnetic sensors and sensing application. Sensors and Actuators A: Physical, 59(1-3), 1-8. doi:10.1016/s0924-4247(97)80141-0 es_ES
dc.description.references Vazquez, M., Kurlyandskaya, G. V., Garcia-Beneytez, J. M., Sinnecker, J. P., Barandiaran, J. M., Lukshina, V. A., & Potapov, A. P. (1999). Frequency dependence of the magnetoimpedance in nanocrystalline FeCuNbSiB with high transverse stress-induced magnetic anisotropy. IEEE Transactions on Magnetics, 35(5), 3358-3360. doi:10.1109/20.800523 es_ES
dc.description.references L.Sánchez, M., M.Prida, V., Hernando, B., V.Kurlyandskaya, G., D.Santos, J., Tejedor, M., & Vázquez, M. (2002). Magnetostriction Dependence of the Relaxation Frequency in the Magnetoimpedance Effect for Amorphous and Nanocrystalline Ribbons. Chinese Physics Letters, 19(12), 1870-1873. doi:10.1088/0256-307x/19/12/339 es_ES
dc.description.references Xiao, S., Liu, Y., Yan, S., Dai, Y., Zhang, L., & Mei, L. (2000). Giant magnetoimpedance and domain structure in FeCuNbSiB films and sandwiched films. Physical Review B, 61(8), 5734-5739. doi:10.1103/physrevb.61.5734 es_ES
dc.description.references Nishibe, Y., Yamadera, H., Ohta, N., Tsukada, K., & Nonomura, Y. (2000). Thin film magnetic field sensor utilizing Magneto Impedance effect. Sensors and Actuators A: Physical, 82(1-3), 155-160. doi:10.1016/s0924-4247(99)00327-1 es_ES
dc.description.references You-Yong, D., Shu-Qin, X., Yi-Hua, L., Lin, Z., Hou-Zheng, W., & Yan-Zhong, Z. (2001). Frequency and Field Dependences of Giant Magneto-Impedance Effect in Sandwiched FeCuCrVSiB Films. Chinese Physics Letters, 18(2), 272-274. doi:10.1088/0256-307x/18/2/340 es_ES
dc.description.references Beach, R. S., Smith, N., Platt, C. L., Jeffers, F., & Berkowitz, A. E. (1996). Magneto‐impedance effect in NiFe plated wire. Applied Physics Letters, 68(19), 2753-2755. doi:10.1063/1.115587 es_ES
dc.description.references Betancourt, I., Valenzuela, R., & Vazquez, M. (2002). Giant magnetoimpedance in Co-based microwires at low frequencies (100 Hz–13 MHz). Journal of Applied Physics, 91(10), 8423. doi:10.1063/1.1447518 es_ES
dc.description.references Iida, S., Ishii, O., & Kambe, S. (1998). Magnetic Sensor Using Second Harmonic Change in Magneto-Impedance Effect. Japanese Journal of Applied Physics, 37(Part 2, No. 7B), L869-L871. doi:10.1143/jjap.37.l869 es_ES
dc.description.references Amalou, F., & Gijs, M. A. M. (2002). Giant magnetoimpedance in trilayer structures of patterned magnetic amorphous ribbons. Applied Physics Letters, 81(9), 1654-1656. doi:10.1063/1.1499769 es_ES
dc.description.references Panina, L. ., & Mohri, K. (2000). Magneto-impedance in multilayer films. Sensors and Actuators A: Physical, 81(1-3), 71-77. doi:10.1016/s0924-4247(99)00089-8 es_ES
dc.description.references Kurlyandskaya, G. V., Yakabchuk, H., Kisker, E., Bebenin, N. G., Garcı́a-Miquel, H., Vázquez, M., & Vas’kovskiy, V. O. (2001). Very large magnetoimpedance effect in FeCoNi ferromagnetic tubes with high order magnetic anisotropy. Journal of Applied Physics, 90(12), 6280-6286. doi:10.1063/1.1418423 es_ES
dc.description.references Kurlyandskaya, G. ., Garcı́a-Miquel, H., Vázquez, M., Svalov, A. ., & Vas’kovskiy, V. . (2002). Longitudinal magnetic bistability of electroplated wires. Journal of Magnetism and Magnetic Materials, 249(1-2), 34-38. doi:10.1016/s0304-8853(02)00500-0 es_ES
dc.description.references Tejedor, M., Rubio, H., Elbaile, L., & Iglesias, R. (1993). Surface magnetic anisotropy in amorphous alloys. IEEE Transactions on Magnetics, 29(6), 3466-3468. doi:10.1109/20.281198 es_ES
dc.description.references Tejedor, M., Garcı́a, J. A., Carrizo, J., Elbaile, L., & Santos, J. D. (2002). Effect of residual stresses and surface roughness on coercive force in amorphous alloys. Journal of Applied Physics, 91(10), 8435. doi:10.1063/1.1453947 es_ES
dc.description.references Kurlyandskaya, G. V., Sánchez, M. L., Hernando, B., Prida, V. M., Gorria, P., & Tejedor, M. (2003). Giant-magnetoimpedance-based sensitive element as a model for biosensors. Applied Physics Letters, 82(18), 3053-3055. doi:10.1063/1.1571957 es_ES
dc.description.references Miyajima, H., Sato, K., & Mizoguchi, T. (1976). Simple analysis of torque measurement of magnetic thin films. Journal of Applied Physics, 47(10), 4669-4671. doi:10.1063/1.322398 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem