Mostrar el registro sencillo del ítem
dc.contributor.author | Conesa Domínguez, Claudia | es_ES |
dc.contributor.author | Seguí Gil, Lucía | es_ES |
dc.contributor.author | Fito Maupoey, Pedro | es_ES |
dc.date.accessioned | 2018-02-13T08:16:25Z | |
dc.date.available | 2018-02-13T08:16:25Z | |
dc.date.issued | 2017 | es_ES |
dc.identifier.issn | 1877-2641 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/97772 | |
dc.description.abstract | [EN] Purpose The hydrolytic action of Aspergillus niger and Trichoderma reesei commercial cellulases, alone or combined with A. niger hemicellulase, against industrial pineapple waste as a previous step to produce bioethanol was investigated. Methods Enzymatic hydrolysis experiments were conducted in static conditions in an incubation oven, by adding the corresponding enzyme mixture to the pineapple waste (combinations of 0, 0.1, 0.2 and 0.4 (w/w) of cellulase from A. niger or T. reesei and hemicellulase from A. niger). pH and total soluble solids were examined along the treatments, and the sugar profile in the final hydrolysates was evaluated by high-performance anion-exchange chromatography. Results Trichoderma reesei cellulase exhibited a significantly faster initial hydrolysing rate than A. niger cellulase (0.258±0.004 vs. 0.15±0.07, for the maximum enzyme concentrations assayed), although differences regarding soluble sugars increments were not significant at the end of the treatment (0.349±0.009 vs. 0.34±0.05). Glucose, fructose, sucrose, arabinose, xylose and cellobiose were identified in the hydrolysates. Increasing enzyme concentration (cellulase or hemicellulase) produced an increase in total and fermentable sugars released (17 and 11%, respectively, for the maximum enzymatic concentration assayed); besides, a synergistic effect of combining hemicellulase and cellulase was identified. Accumulation of cellobiose (up to 4.4 g/L), which may slow down hydrolysis, evidenced the weaker ß-glucosidase activity of T. reesei cellulase. Due to its performance and the lower cost of the enzyme, A. niger cellulase was chosen as an alternative. Conclusions Commercial A. niger cellulase represents an efficient alternative to T. reesei cellulase for the saccharification of industrial pineapple waste, especially when combined with a hemicellulase. Total sugars present in the final hydrolysates indicated that A. niger cellulase performed similarly at a lower cost, with no cellobiose accumulation. However, if processing time is a limiting factor, T. reesei cellulase could be the one preferred. | es_ES |
dc.description.sponsorship | The authors would like to acknowledge the financial support of the Universitat Politècnica de València FPI grant programme | |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Waste and Biomass Valorization | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Pineapple waste | es_ES |
dc.subject | Lignocellulosic biomass | es_ES |
dc.subject | Enzymatic hydrolysis | es_ES |
dc.subject | Cellulases | es_ES |
dc.subject | Bioethanol | es_ES |
dc.subject.classification | TECNOLOGIA DE ALIMENTOS | es_ES |
dc.title | Hydrolytic performance of Aspergillus niger and Trichoderma reesei cellulases on lignocellulosic industrial pineapple waste intended for bioethanol production | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s12649-017-9887-z | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.date.embargoEndDate | 2018-03-31 | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments | es_ES |
dc.description.bibliographicCitation | Conesa Domínguez, C.; Seguí Gil, L.; Fito Maupoey, P. (2017). Hydrolytic performance of Aspergillus niger and Trichoderma reesei cellulases on lignocellulosic industrial pineapple waste intended for bioethanol production. Waste and Biomass Valorization. 1-10. doi:10.1007/s12649-017-9887-z | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | http://doi.org/10.1007/s12649-017-9887-z | es_ES |
dc.description.upvformatpinicio | 1359 | es_ES |
dc.description.upvformatpfin | 1368 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 9 | |
dc.relation.pasarela | S\326013 | es_ES |
dc.contributor.funder | Universitat Politècnica de València | |
dc.description.references | EC of European Parliament and of the Council: Directive 2009/28/ of 23 April 2009 on the promotion of the use of energy from renewable sources. Off. J. Eur. Union. L. 140/64(5), 6 (2009) | es_ES |
dc.description.references | Demirbas, A.: Production of fuels from crops. In: Speight, G.J (ed.) The Biofuels Handbook, pp. 201–227. RSC Publishing, Cambridge (2011) | es_ES |
dc.description.references | Ketnawa, S., Chaiwut, P., Rawdkuen, S.: Pineapple wastes: a potential source for bromelain extraction. Food Bioprod. Process. 90, 385–391 (2012) | es_ES |
dc.description.references | Nga, N.T., Trang, N.T.: Influence of the fermentation of pineapple wastes with the use of methanobacterium strains separated in Vietnam on the production of biogas from them. J. Eng. Phys. Thermophys. 88(2), 1204–1208 (2015) | es_ES |
dc.description.references | Abdullah, A., Mat, H.: Characterisation of solid and liquid pineapple waste. Reaktor 12, 48–52 (2008) | es_ES |
dc.description.references | Fujii, T., Fang, X., Inoue, H., Murakami, K., Sawayama, S.: Enzymatic hydrolyzing performance of Acremonium cellulolyticus and Trichoderma reesei against three lignocellulosic materials. Biotechnol. Biofuels 2, 24 (2009). doi: 10.1186/1754-6834-2-24 | es_ES |
dc.description.references | Roda, A., Faveri, D.M., Dordoni, R., Lambri, M.: Vinegar production from pineapple wastes - preliminary saccharification trials. Chem. Eng. Trans. 37, 607–612 (2014) | es_ES |
dc.description.references | Khedkar, M.A., Nimbalkar, P.R., Gaikwad, S.G., Chavan, P.V., Bankar, S.B.: Sustainable biobutanol production from pineapple waste by using Clostridium acetobutylicum B 527: drying kinetics study. Bioresour. Technol. 10.1016/j.biortech.2016.11.058 (2016) | es_ES |
dc.description.references | Galbe, M., Zacchi, G.: A review of the production of ethanol from softwood. Appl. Microbiol. Biotechnol. 59, 618–628 (2002) | es_ES |
dc.description.references | Sun, Y., Cheng, J.: Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour. Technol. 83, 1–11 (2002) | es_ES |
dc.description.references | Rosgaard, L., Pedersen, S., Langston, J., Akerhiem, D., Cherry, J.R., Meyer, A.S.: Evaluation of minimal Trichoderma reesei cellulase mixtures on differently pretreated barley straw substrates. Biotechnol. Progress. 23(6), 1270–1276 (2007) | es_ES |
dc.description.references | Balat, M.: Production of bioethanol from lignocellulosic materials via the biochemical pathway: a review. Energy Convers. Manag. 52(2), 858–875 (2011) | es_ES |
dc.description.references | Sternberg, D., Vijayakumar, P., Reese, E.T.: β-Glucosidase: microbial production and effect on enzymatic hydrolysis of cellulose. Can. J. Microbiol. 23, 139–147 (1997) | es_ES |
dc.description.references | Chootnut, A., Saejong, M., Angkharak, K.: The production of ethanol and hydrogen from pineapple peel by Saccharomyces Cerevisiae and Enterobacter Aerogenes. Energy Proced. 52, 242–249 (2014) | es_ES |
dc.description.references | Aguiar, C.L.: Biodegradation of the cellulose from sugarcane bagasse by fungal cellulase. Cienc. Tecnol. Aliment 3, 117–121 (2001) | es_ES |
dc.description.references | Park, Y.S., Kang, S.W., Lee, J.S., Hong, S.I., Kim, S.W.: Xylanase production in solid state fermentation by Aspergillus niger mutant using statistical experimental designs. Appl. Microbiol. Biot. 58, 762–766 (2002) | es_ES |
dc.description.references | Peleg, M.: An empirical-model for the description of moisture sorption curves. J. Food Sci. 53(4), 1216–1219 (1988) | es_ES |
dc.description.references | Cárcel, J.A., García-Pérez, J.V., Sanjuán, N., Mulet, A.: Influence of pre-treatment and storage temperature on the evolution of the colour of dried persimmon. LWT-Food Sci. Technol. 43, 1191–1196 (2010) | es_ES |
dc.description.references | Bayer, E.A., Chanzy, H., Lamed, R., Shoham, Y.: Cellulose, cellulases and cellulosomes. Curr. Opin. Str. Biol. 8, 548–557 (1998) | es_ES |
dc.description.references | Hahn-Hagerdal, B., Karhumaa, K., Fonseca, C., Spencer-Martins, I., Gorwa-Grauslund, M.F.: Towards industrial pentose-fermenting yeast strains. Appl. Biochem. Biotechnol. 74, 1207–1209 (2007) | es_ES |
dc.description.references | Matsushika, A., Inoue, H., Kodaki, T., Sawayama, S.: Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: current state and perspectives. Appl. Microbiol. Biotechnol. 84, 37–53 (2009) | es_ES |
dc.description.references | Ban-Koffi, L., Han, Y.W.: Alcohol production from pineapple waste. World J. Microb. Biot. 6, 281–284 (1990) | es_ES |
dc.description.references | Medve, J., Karlsson, J., Lee, D., Tjerneld, F. Hydrolysis of microcrystalline cellulose by cellobiohydrolase I and endoglucanase II from Trichoderma reesei: adsorption, sugar production pattern, and synergism of the enzymes. Biotechnol. Bioeng. 59, 621–634 (1998) | es_ES |
dc.description.references | Verardi, A., De Bari, I., Ricca, E., Calabro, V.: Hydrolysis of lignocellulosic biomass: current status of processes and technologies and future perspectives. In: Pinheiro Lima, M.A., Pardo Policastro Natalense, A. (eds.) Bioethanol, pp. 95–122. InTech, Rijeka (2012) | es_ES |
dc.description.references | Huang, C.F., Lin, T.H., Guo, G.L., Hwang, W.S.: Enhanced ethanol production by fermentation of rice straw hydrolysate without detoxification using a newly adapted strain of Pichia stipitis. Bioresour. Technol. 100, 3914–3920 (2009) | es_ES |
dc.description.references | Mussatto, S.I., Dragone, G., Guimaraes, P.M.R., Silva, J.P.A., Carneiro, L.M., Roberto, I.C., Vicente, A., Domingues, L., Teixeira, J.A.: Technological trends, global market, and challenges of bio-ethanol production. Biotechnol. Adv. 28, 1873–1899 (2010) | es_ES |
dc.description.references | Cardona, C.A., Sánchez, O.J.: Fuel ethanol production: process designs trends and integration opportunities. Bioresource Technol. 98, 2415–2457 (2007) | es_ES |
dc.description.references | Dien, B.S., Cotta, M.A., Jeffries, T.W.: Bacteria engineered for fuel ethanol production: current status. Appl. Microb. Biotec. 63, 258 (2003) | es_ES |
dc.description.references | Zhang, M., Eddy, C., Deanda, K., Finkelstein, M., Picataggio, S.: Metabolic engineering of a pentose metabolism pathway in ethanologenic Zymomonas mobilis. Science 267(5195), 240–243 (1995) | es_ES |
dc.description.references | Deanda, K., Zhang, M., Eddy, C., Picataggio, S.: Development of an arabinose-fermenting Zymomonas mobilis strain by metabolic pathway engineering. Appl. Environ. Microbiol. 62(12), 4465–4470 (1996) | es_ES |
dc.description.references | Taherzadeh, M.J., Karimi, K.: Process for ethanol from lignocellulosic materials I: acid-based hydrolysis processes. Bioresources. 2(3), 472–499 (2007) | es_ES |
dc.description.references | Qin, Y., Wei, W., Song, X., Qu, Y.: Engineering endoglucanase II from Trichoderma reesei to improve the catalytic efficiency at a higher pH optimum. J. Biotechnol. 135(2), 190–195 (2008) | es_ES |
dc.description.references | Jahangeer, S., Khan, N., Jahangeer, S., Soail, M., Shahzab, S., Ahmad, A., Khan, S.A.: Screening and characterization of fungal cellulases isolated from the native environmental source. Pak. J. Bot. 37(3), 739–748 (2005) | es_ES |