- -

Hydrolytic performance of Aspergillus niger and Trichoderma reesei cellulases on lignocellulosic industrial pineapple waste intended for bioethanol production

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Hydrolytic performance of Aspergillus niger and Trichoderma reesei cellulases on lignocellulosic industrial pineapple waste intended for bioethanol production

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Conesa Domínguez, Claudia es_ES
dc.contributor.author Seguí Gil, Lucía es_ES
dc.contributor.author Fito Maupoey, Pedro es_ES
dc.date.accessioned 2018-02-13T08:16:25Z
dc.date.available 2018-02-13T08:16:25Z
dc.date.issued 2017 es_ES
dc.identifier.issn 1877-2641 es_ES
dc.identifier.uri http://hdl.handle.net/10251/97772
dc.description.abstract [EN] Purpose The hydrolytic action of Aspergillus niger and Trichoderma reesei commercial cellulases, alone or combined with A. niger hemicellulase, against industrial pineapple waste as a previous step to produce bioethanol was investigated. Methods Enzymatic hydrolysis experiments were conducted in static conditions in an incubation oven, by adding the corresponding enzyme mixture to the pineapple waste (combinations of 0, 0.1, 0.2 and 0.4 (w/w) of cellulase from A. niger or T. reesei and hemicellulase from A. niger). pH and total soluble solids were examined along the treatments, and the sugar profile in the final hydrolysates was evaluated by high-performance anion-exchange chromatography. Results Trichoderma reesei cellulase exhibited a significantly faster initial hydrolysing rate than A. niger cellulase (0.258±0.004 vs. 0.15±0.07, for the maximum enzyme concentrations assayed), although differences regarding soluble sugars increments were not significant at the end of the treatment (0.349±0.009 vs. 0.34±0.05). Glucose, fructose, sucrose, arabinose, xylose and cellobiose were identified in the hydrolysates. Increasing enzyme concentration (cellulase or hemicellulase) produced an increase in total and fermentable sugars released (17 and 11%, respectively, for the maximum enzymatic concentration assayed); besides, a synergistic effect of combining hemicellulase and cellulase was identified. Accumulation of cellobiose (up to 4.4 g/L), which may slow down hydrolysis, evidenced the weaker ß-glucosidase activity of T. reesei cellulase. Due to its performance and the lower cost of the enzyme, A. niger cellulase was chosen as an alternative. Conclusions Commercial A. niger cellulase represents an efficient alternative to T. reesei cellulase for the saccharification of industrial pineapple waste, especially when combined with a hemicellulase. Total sugars present in the final hydrolysates indicated that A. niger cellulase performed similarly at a lower cost, with no cellobiose accumulation. However, if processing time is a limiting factor, T. reesei cellulase could be the one preferred. es_ES
dc.description.sponsorship The authors would like to acknowledge the financial support of the Universitat Politècnica de València FPI grant programme
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Waste and Biomass Valorization es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Pineapple waste es_ES
dc.subject Lignocellulosic biomass es_ES
dc.subject Enzymatic hydrolysis es_ES
dc.subject Cellulases es_ES
dc.subject Bioethanol es_ES
dc.subject.classification TECNOLOGIA DE ALIMENTOS es_ES
dc.title Hydrolytic performance of Aspergillus niger and Trichoderma reesei cellulases on lignocellulosic industrial pineapple waste intended for bioethanol production es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s12649-017-9887-z es_ES
dc.rights.accessRights Abierto es_ES
dc.date.embargoEndDate 2018-03-31 es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments es_ES
dc.description.bibliographicCitation Conesa Domínguez, C.; Seguí Gil, L.; Fito Maupoey, P. (2017). Hydrolytic performance of Aspergillus niger and Trichoderma reesei cellulases on lignocellulosic industrial pineapple waste intended for bioethanol production. Waste and Biomass Valorization. 1-10. doi:10.1007/s12649-017-9887-z es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1007/s12649-017-9887-z es_ES
dc.description.upvformatpinicio 1359 es_ES
dc.description.upvformatpfin 1368 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 9
dc.relation.pasarela S\326013 es_ES
dc.contributor.funder Universitat Politècnica de València
dc.description.references EC of European Parliament and of the Council: Directive 2009/28/ of 23 April 2009 on the promotion of the use of energy from renewable sources. Off. J. Eur. Union. L. 140/64(5), 6 (2009) es_ES
dc.description.references Demirbas, A.: Production of fuels from crops. In: Speight, G.J (ed.) The Biofuels Handbook, pp. 201–227. RSC Publishing, Cambridge (2011) es_ES
dc.description.references Ketnawa, S., Chaiwut, P., Rawdkuen, S.: Pineapple wastes: a potential source for bromelain extraction. Food Bioprod. Process. 90, 385–391 (2012) es_ES
dc.description.references Nga, N.T., Trang, N.T.: Influence of the fermentation of pineapple wastes with the use of methanobacterium strains separated in Vietnam on the production of biogas from them. J. Eng. Phys. Thermophys. 88(2), 1204–1208 (2015) es_ES
dc.description.references Abdullah, A., Mat, H.: Characterisation of solid and liquid pineapple waste. Reaktor 12, 48–52 (2008) es_ES
dc.description.references Fujii, T., Fang, X., Inoue, H., Murakami, K., Sawayama, S.: Enzymatic hydrolyzing performance of Acremonium cellulolyticus and Trichoderma reesei against three lignocellulosic materials. Biotechnol. Biofuels 2, 24 (2009). doi: 10.1186/1754-6834-2-24 es_ES
dc.description.references Roda, A., Faveri, D.M., Dordoni, R., Lambri, M.: Vinegar production from pineapple wastes - preliminary saccharification trials. Chem. Eng. Trans. 37, 607–612 (2014) es_ES
dc.description.references Khedkar, M.A., Nimbalkar, P.R., Gaikwad, S.G., Chavan, P.V., Bankar, S.B.: Sustainable biobutanol production from pineapple waste by using Clostridium acetobutylicum B 527: drying kinetics study. Bioresour. Technol. 10.1016/j.biortech.2016.11.058 (2016) es_ES
dc.description.references Galbe, M., Zacchi, G.: A review of the production of ethanol from softwood. Appl. Microbiol. Biotechnol. 59, 618–628 (2002) es_ES
dc.description.references Sun, Y., Cheng, J.: Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour. Technol. 83, 1–11 (2002) es_ES
dc.description.references Rosgaard, L., Pedersen, S., Langston, J., Akerhiem, D., Cherry, J.R., Meyer, A.S.: Evaluation of minimal Trichoderma reesei cellulase mixtures on differently pretreated barley straw substrates. Biotechnol. Progress. 23(6), 1270–1276 (2007) es_ES
dc.description.references Balat, M.: Production of bioethanol from lignocellulosic materials via the biochemical pathway: a review. Energy Convers. Manag. 52(2), 858–875 (2011) es_ES
dc.description.references Sternberg, D., Vijayakumar, P., Reese, E.T.: β-Glucosidase: microbial production and effect on enzymatic hydrolysis of cellulose. Can. J. Microbiol. 23, 139–147 (1997) es_ES
dc.description.references Chootnut, A., Saejong, M., Angkharak, K.: The production of ethanol and hydrogen from pineapple peel by Saccharomyces Cerevisiae and Enterobacter Aerogenes. Energy Proced. 52, 242–249 (2014) es_ES
dc.description.references Aguiar, C.L.: Biodegradation of the cellulose from sugarcane bagasse by fungal cellulase. Cienc. Tecnol. Aliment 3, 117–121 (2001) es_ES
dc.description.references Park, Y.S., Kang, S.W., Lee, J.S., Hong, S.I., Kim, S.W.: Xylanase production in solid state fermentation by Aspergillus niger mutant using statistical experimental designs. Appl. Microbiol. Biot. 58, 762–766 (2002) es_ES
dc.description.references Peleg, M.: An empirical-model for the description of moisture sorption curves. J. Food Sci. 53(4), 1216–1219 (1988) es_ES
dc.description.references Cárcel, J.A., García-Pérez, J.V., Sanjuán, N., Mulet, A.: Influence of pre-treatment and storage temperature on the evolution of the colour of dried persimmon. LWT-Food Sci. Technol. 43, 1191–1196 (2010) es_ES
dc.description.references Bayer, E.A., Chanzy, H., Lamed, R., Shoham, Y.: Cellulose, cellulases and cellulosomes. Curr. Opin. Str. Biol. 8, 548–557 (1998) es_ES
dc.description.references Hahn-Hagerdal, B., Karhumaa, K., Fonseca, C., Spencer-Martins, I., Gorwa-Grauslund, M.F.: Towards industrial pentose-fermenting yeast strains. Appl. Biochem. Biotechnol. 74, 1207–1209 (2007) es_ES
dc.description.references Matsushika, A., Inoue, H., Kodaki, T., Sawayama, S.: Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: current state and perspectives. Appl. Microbiol. Biotechnol. 84, 37–53 (2009) es_ES
dc.description.references Ban-Koffi, L., Han, Y.W.: Alcohol production from pineapple waste. World J. Microb. Biot. 6, 281–284 (1990) es_ES
dc.description.references Medve, J., Karlsson, J., Lee, D., Tjerneld, F. Hydrolysis of microcrystalline cellulose by cellobiohydrolase I and endoglucanase II from Trichoderma reesei: adsorption, sugar production pattern, and synergism of the enzymes. Biotechnol. Bioeng. 59, 621–634 (1998) es_ES
dc.description.references Verardi, A., De Bari, I., Ricca, E., Calabro, V.: Hydrolysis of lignocellulosic biomass: current status of processes and technologies and future perspectives. In: Pinheiro Lima, M.A., Pardo Policastro Natalense, A. (eds.) Bioethanol, pp. 95–122. InTech, Rijeka (2012) es_ES
dc.description.references Huang, C.F., Lin, T.H., Guo, G.L., Hwang, W.S.: Enhanced ethanol production by fermentation of rice straw hydrolysate without detoxification using a newly adapted strain of Pichia stipitis. Bioresour. Technol. 100, 3914–3920 (2009) es_ES
dc.description.references Mussatto, S.I., Dragone, G., Guimaraes, P.M.R., Silva, J.P.A., Carneiro, L.M., Roberto, I.C., Vicente, A., Domingues, L., Teixeira, J.A.: Technological trends, global market, and challenges of bio-ethanol production. Biotechnol. Adv. 28, 1873–1899 (2010) es_ES
dc.description.references Cardona, C.A., Sánchez, O.J.: Fuel ethanol production: process designs trends and integration opportunities. Bioresource Technol. 98, 2415–2457 (2007) es_ES
dc.description.references Dien, B.S., Cotta, M.A., Jeffries, T.W.: Bacteria engineered for fuel ethanol production: current status. Appl. Microb. Biotec. 63, 258 (2003) es_ES
dc.description.references Zhang, M., Eddy, C., Deanda, K., Finkelstein, M., Picataggio, S.: Metabolic engineering of a pentose metabolism pathway in ethanologenic Zymomonas mobilis. Science 267(5195), 240–243 (1995) es_ES
dc.description.references Deanda, K., Zhang, M., Eddy, C., Picataggio, S.: Development of an arabinose-fermenting Zymomonas mobilis strain by metabolic pathway engineering. Appl. Environ. Microbiol. 62(12), 4465–4470 (1996) es_ES
dc.description.references Taherzadeh, M.J., Karimi, K.: Process for ethanol from lignocellulosic materials I: acid-based hydrolysis processes. Bioresources. 2(3), 472–499 (2007) es_ES
dc.description.references Qin, Y., Wei, W., Song, X., Qu, Y.: Engineering endoglucanase II from Trichoderma reesei to improve the catalytic efficiency at a higher pH optimum. J. Biotechnol. 135(2), 190–195 (2008) es_ES
dc.description.references Jahangeer, S., Khan, N., Jahangeer, S., Soail, M., Shahzab, S., Ahmad, A., Khan, S.A.: Screening and characterization of fungal cellulases isolated from the native environmental source. Pak. J. Bot. 37(3), 739–748 (2005) es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem