- -

Characterization of non-Gaussian conductivities and porosities with hydraulic heads, solute concentrations, and water temperatures

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Characterization of non-Gaussian conductivities and porosities with hydraulic heads, solute concentrations, and water temperatures

Show full item record

Xu, T.; Gómez-Hernández, JJ. (2016). Characterization of non-Gaussian conductivities and porosities with hydraulic heads, solute concentrations, and water temperatures. Water Resources Research. 52(8):6111-6136. https://doi.org/10.1002/2016WR019011

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/98066

Files in this item

Item Metadata

Title: Characterization of non-Gaussian conductivities and porosities with hydraulic heads, solute concentrations, and water temperatures
Author: Xu, Teng Gómez-Hernández, J. Jaime
UPV Unit: Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient
Universitat Politècnica de València. Instituto Universitario de Ingeniería del Agua y del Medio Ambiente - Institut Universitari d'Enginyeria de l'Aigua i Medi Ambient
Issued date:
Abstract:
Reliable characterization of hydraulic parameters is important for the understanding of groundwater flow and solute transport. The normal-score ensemble Kalman filter (NS-EnKF) has proven to be an effective inverse method ...[+]
Subjects: Normal-score ensemble Kalman filter , Groundwater temperature , Heat transport , Inverse modeling , Normal-score transform
Copyrigths: Reserva de todos los derechos
Source:
Water Resources Research. (issn: 0043-1397 )
DOI: 10.1002/2016WR019011
Publisher:
John Wiley & Sons
Publisher version: http://doi.org/10.1002/2016WR019011
Project ID:
info:eu-repo/grantAgreement/MINECO//CGL2014-59841-P/ES/¿QUIEN HA SIDO?/
Thanks:
Financial support to carry out this work was provided by the Spanish Ministry of Economy and Competitiveness through project CGL2014-59841-P. All data used in this analysis are available from the authors.
Type: Artículo

References

Alcolea, A., Carrera, J., & Medina, A. (2006). Pilot points method incorporating prior information for solving the groundwater flow inverse problem. Advances in Water Resources, 29(11), 1678-1689. doi:10.1016/j.advwatres.2005.12.009

Anderson, M. P. (2005). Heat as a Ground Water Tracer. Ground Water, 43(6), 951-968. doi:10.1111/j.1745-6584.2005.00052.x

Bravo, H. R., Jiang, F., & Hunt, R. J. (2002). Using groundwater temperature data to constrain parameter estimation in a groundwater flow model of a wetland system. Water Resources Research, 38(8), 28-1-28-14. doi:10.1029/2000wr000172 [+]
Alcolea, A., Carrera, J., & Medina, A. (2006). Pilot points method incorporating prior information for solving the groundwater flow inverse problem. Advances in Water Resources, 29(11), 1678-1689. doi:10.1016/j.advwatres.2005.12.009

Anderson, M. P. (2005). Heat as a Ground Water Tracer. Ground Water, 43(6), 951-968. doi:10.1111/j.1745-6584.2005.00052.x

Bravo, H. R., Jiang, F., & Hunt, R. J. (2002). Using groundwater temperature data to constrain parameter estimation in a groundwater flow model of a wetland system. Water Resources Research, 38(8), 28-1-28-14. doi:10.1029/2000wr000172

Capilla, J. E., & Llopis-Albert, C. (2009). Gradual conditioning of non-Gaussian transmissivity fields to flow and mass transport data: 1. Theory. Journal of Hydrology, 371(1-4), 66-74. doi:10.1016/j.jhydrol.2009.03.015

Chang, H., Zhang, D., & Lu, Z. (2010). History matching of facies distribution with the EnKF and level set parameterization. Journal of Computational Physics, 229(20), 8011-8030. doi:10.1016/j.jcp.2010.07.005

Chen , Y. D. S. Oliver 2010

Chen, Y., Oliver, D. S., & Zhang, D. (2009). Data assimilation for nonlinear problems by ensemble Kalman filter with reparameterization. Journal of Petroleum Science and Engineering, 66(1-2), 1-14. doi:10.1016/j.petrol.2008.12.002

Doussan, C., Toma, A., Paris, B., Poitevin, G., Ledoux, E., & Detay, M. (1994). Coupled use of thermal and hydraulic head data to characterize river-groundwater exchanges. Journal of Hydrology, 153(1-4), 215-229. doi:10.1016/0022-1694(94)90192-9

Dovera, L., & Della Rossa, E. (2010). Multimodal ensemble Kalman filtering using Gaussian mixture models. Computational Geosciences, 15(2), 307-323. doi:10.1007/s10596-010-9205-3

Evensen, G. (2003). The Ensemble Kalman Filter: theoretical formulation and practical implementation. Ocean Dynamics, 53(4), 343-367. doi:10.1007/s10236-003-0036-9

Franssen, H.-J. H., Gómez-Hernández, J., & Sahuquillo, A. (2003). Coupled inverse modelling of groundwater flow and mass transport and the worth of concentration data. Journal of Hydrology, 281(4), 281-295. doi:10.1016/s0022-1694(03)00191-4

Fu, J., & Jaime Gómez-Hernández, J. (2009). Uncertainty assessment and data worth in groundwater flow and mass transport modeling using a blocking Markov chain Monte Carlo method. Journal of Hydrology, 364(3-4), 328-341. doi:10.1016/j.jhydrol.2008.11.014

Gómez-Hernández, J. J., & Journel, A. G. (1993). Joint Sequential Simulation of MultiGaussian Fields. Geostatistics Tróia ’92, 85-94. doi:10.1007/978-94-011-1739-5_8

Gómez-Hernández, J. J., & Wen, X.-H. (1994). Probabilistic assessment of travel times in groundwater modeling. Stochastic Hydrology and Hydraulics, 8(1), 19-55. doi:10.1007/bf01581389

G�mez-Hern�ndez, J. J., Franssen, H.-J. W. M. H., & Sahuquillo, A. (2003). Stochastic conditional inverse modeling of subsurface mass transport: A brief review and the self-calibrating method. Stochastic Environmental Research and Risk Assessment (SERRA), 17(5), 319-328. doi:10.1007/s00477-003-0153-5

Gordon , N. D. Salmond A. Smith 1993 Novel approach to nonlinear/non-Gaussian Bayesian state estimation Proc. Inst. Electr. Eng. 140 107 113

Gu, Y., & Oliver, D. S. (2005). The Ensemble Kalman Filter for Continuous Updating of Reservoir Simulation Models. Journal of Energy Resources Technology, 128(1), 79-87. doi:10.1115/1.2134735

Gu, Y., & Oliver, D. S. (2007). An Iterative Ensemble Kalman Filter for Multiphase Fluid Flow Data Assimilation. SPE Journal, 12(04), 438-446. doi:10.2118/108438-pa

Hu, L. Y. (2000). Mathematical Geology, 32(1), 87-108. doi:10.1023/a:1007506918588

Kalman, R. E. (1960). A New Approach to Linear Filtering and Prediction Problems. Journal of Basic Engineering, 82(1), 35-45. doi:10.1115/1.3662552

Kurtz, W., Hendricks Franssen, H.-J., Kaiser, H.-P., & Vereecken, H. (2014). Joint assimilation of piezometric heads and groundwater temperatures for improved modeling of river-aquifer interactions. Water Resources Research, 50(2), 1665-1688. doi:10.1002/2013wr014823

Li, L., Zhou, H., Gómez-Hernández, J. J., & Hendricks Franssen, H.-J. (2012). Jointly mapping hydraulic conductivity and porosity by assimilating concentration data via ensemble Kalman filter. Journal of Hydrology, 428-429, 152-169. doi:10.1016/j.jhydrol.2012.01.037

Li, L., Zhou, H., Hendricks Franssen, H. J., & Gómez-Hernández, J. J. (2011). Groundwater flow inverse modeling in non-MultiGaussian media: performance assessment of the normal-score Ensemble Kalman Filter. Hydrology and Earth System Sciences Discussions, 8(4), 6749-6788. doi:10.5194/hessd-8-6749-2011

Liu , N. D. Oliver 2005 Critical evaluation of the ensemble Kalman filter on history matching of geologic facies SPE Reservoir Eval. Eng. 8 6 470 477

Losa, S. N., Kivman, G. A., Schröter, J., & Wenzel, M. (2003). Sequential weak constraint parameter estimation in an ecosystem model. Journal of Marine Systems, 43(1-2), 31-49. doi:10.1016/j.jmarsys.2003.06.001

Ma , R. C. Zheng 2010 Effects of density and viscosity in modeling heat as a groundwater tracer, Groundwater 48 3 380 389

Ma, R., Zheng, C., Zachara, J. M., & Tonkin, M. (2012). Utility of bromide and heat tracers for aquifer characterization affected by highly transient flow conditions. Water Resources Research, 48(8). doi:10.1029/2011wr011281

McDonald , M. A. Harbaugh 1988

Oliver, D. S., Cunha, L. B., & Reynolds, A. C. (1997). Markov chain Monte Carlo methods for conditioning a permeability field to pressure data. Mathematical Geology, 29(1), 61-91. doi:10.1007/bf02769620

RamaRao, B. S., LaVenue, A. M., De Marsily, G., & Marietta, M. G. (1995). Pilot Point Methodology for Automated Calibration of an Ensemble of conditionally Simulated Transmissivity Fields: 1. Theory and Computational Experiments. Water Resources Research, 31(3), 475-493. doi:10.1029/94wr02258

Reich, S. (2011). A Gaussian-mixture ensemble transform filter. Quarterly Journal of the Royal Meteorological Society, 138(662), 222-233. doi:10.1002/qj.898

Simon, E., & Bertino, L. (2009). Application of the Gaussian anamorphosis to assimilation in a 3-D coupled physical-ecosystem model of the North Atlantic with the EnKF: a twin experiment. Ocean Science, 5(4), 495-510. doi:10.5194/os-5-495-2009

Strebelle, S. (2002). Mathematical Geology, 34(1), 1-21. doi:10.1023/a:1014009426274

Sun, A. Y., Morris, A. P., & Mohanty, S. (2009). Sequential updating of multimodal hydrogeologic parameter fields using localization and clustering techniques. Water Resources Research, 45(7). doi:10.1029/2008wr007443

Van Leeuwen, P. J. (2009). Particle Filtering in Geophysical Systems. Monthly Weather Review, 137(12), 4089-4114. doi:10.1175/2009mwr2835.1

Wang, Y., Li, G., & Reynolds, A. C. (2010). Estimation of Depths of Fluid Contacts by History Matching Using Iterative Ensemble-Kalman Smoothers. SPE Journal, 15(02), 509-525. doi:10.2118/119056-pa

Wen, X.-H., & Chen, W. H. (2006). Real-Time Reservoir Model Updating Using Ensemble Kalman Filter With Confirming Option. SPE Journal, 11(04), 431-442. doi:10.2118/92991-pa

Wen, X.-H., Deutsch, C. V., & Cullick, A. S. (2002). Construction of geostatistical aquifer models integrating dynamic flow and tracer data using inverse technique. Journal of Hydrology, 255(1-4), 151-168. doi:10.1016/s0022-1694(01)00512-1

Wen, X. H., Capilla, J. E., Deutsch, C. V., Gómez-Hernández, J. J., & Cullick, A. S. (1999). A program to create permeability fields that honor single-phase flow rate and pressure data. Computers & Geosciences, 25(3), 217-230. doi:10.1016/s0098-3004(98)00126-5

Xu, T., & Gómez‐Hernández, J. J. (2015). Inverse sequential simulation: A new approach for the characterization of hydraulic conductivities demonstrated on a non‐ G aussian field. Water Resources Research, 51(4), 2227-2242. doi:10.1002/2014wr016320

Xu, T., & Gómez-Hernández, J. J. (2015). Inverse sequential simulation: Performance and implementation details. Advances in Water Resources, 86, 311-326. doi:10.1016/j.advwatres.2015.04.015

Xu, T., Jaime Gómez-Hernández, J., Zhou, H., & Li, L. (2013). The power of transient piezometric head data in inverse modeling: An application of the localized normal-score EnKF with covariance inflation in a heterogenous bimodal hydraulic conductivity field. Advances in Water Resources, 54, 100-118. doi:10.1016/j.advwatres.2013.01.006

Zheng , C. 2010

Zhou, H., Gómez-Hernández, J. J., Hendricks Franssen, H.-J., & Li, L. (2011). An approach to handling non-Gaussianity of parameters and state variables in ensemble Kalman filtering. Advances in Water Resources, 34(7), 844-864. doi:10.1016/j.advwatres.2011.04.014

Zhou, H., Li, L., Hendricks Franssen, H.-J., & Gómez-Hernández, J. J. (2011). Pattern Recognition in a Bimodal Aquifer Using the Normal-Score Ensemble Kalman Filter. Mathematical Geosciences, 44(2), 169-185. doi:10.1007/s11004-011-9372-3

Zhou, H., Gómez-Hernández, J. J., & Li, L. (2014). Inverse methods in hydrogeology: Evolution and recent trends. Advances in Water Resources, 63, 22-37. doi:10.1016/j.advwatres.2013.10.014

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record