- -

A hydroeconomic modeling framework for optimal integrated management of forest and water

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A hydroeconomic modeling framework for optimal integrated management of forest and water

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Garcia-Prats, Alberto es_ES
dc.contributor.author Campo García, Antonio Dámaso del es_ES
dc.contributor.author Pulido-Velazquez, M. es_ES
dc.date.accessioned 2018-02-19T05:12:49Z
dc.date.available 2018-02-19T05:12:49Z
dc.date.issued 2016 es_ES
dc.identifier.issn 0043-1397 es_ES
dc.identifier.uri http://hdl.handle.net/10251/98068
dc.description.abstract [EN] Forests play a determinant role in the hydrologic cycle, with water being the most important ecosystem service they provide in semiarid regions. However, this contribution is usually neither quantified nor explicitly valued. The aim of this study is to develop a novel hydroeconomic modeling framework for assessing and designing the optimal integrated forest and water management for forested catchments. The optimization model explicitly integrates changes in water yield in the stands (increase in groundwater recharge) induced by forest management and the value of the additional water provided to the system. The model determines the optimal schedule of silvicultural interventions in the stands of the catchment in order to maximize the total net benefit in the system. Canopy cover and biomass evolution over time were simulated using growth and yield allometric equations specific for the species in Mediterranean conditions. Silvicultural operation costs according to stand density and canopy cover were modeled using local cost databases. Groundwater recharge was simulated using HYDRUS, calibrated and validated with data from the experimental plots. In order to illustrate the presented modeling framework, a case study was carried out in a planted pine forest (Pinus halepensis Mill.) located in south-western Valencia province (Spain). The optimized scenario increased groundwater recharge. This novel modeling framework can be used in the design of a payment for environmental services scheme in which water beneficiaries could contribute to fund and promote efficient forest management operations. es_ES
dc.description.sponsorship This study is a component of four research projects: "CGL2011-28776-C02-02, HYDROSIL'', ''CGL2013-48424-C2-1-R, IMPADAPT'' and CGL2014-58127-C3-2, SILWAMED, funded by the Spanish Ministry of Science and Innovation and FEDER funds, and Determination of hydrologic and forest recovery factors in Mediterranean forests and their social perception, supported by the Ministry of Environment, Rural and Marine Affairs. The authors are grateful to the Valencia Regional Government (CMAAUV, Generalitat Valenciana) and the VAERSA staff for their support in allowing the use of the La Hunde experimental forest and for their assistance in carrying out the fieldwork. Experimental data belong to Reforest research group. For any question about the data, contact Antonio D. del Campo (ancamga@upv.es).
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof Water Resources Research es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Hydrology-oriented silviculture es_ES
dc.subject Hydroeconomic model es_ES
dc.subject Groundwater recharge. es_ES
dc.subject.classification TECNOLOGIA DEL MEDIO AMBIENTE es_ES
dc.subject.classification INGENIERIA HIDRAULICA es_ES
dc.title A hydroeconomic modeling framework for optimal integrated management of forest and water es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/2015WR018273 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CGL2013-48424-C2-1-R/ES/ADAPTACION AL CAMBIO GLOBAL EN SISTEMAS DE RECURSOS HIDRICOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CGL2011-28776-C02-02/ES/CARACTERIZACION HIDROLOGICA DE LA ESTRUCTURA FORESTAL A ESCALA PARCELA PARA LA IMPLEMENTACION DE SILVICULTURA ADAPTATIVA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CGL2014-58127-C3-2-R/ES/DESARROLLO DE CONCEPTOS Y CRITERIOS PARA UNA GESTION FORESTAL DE BASE ECO-HIDROLOGICA COMO MEDIDA DE ADAPTACION AL CAMBIO GLOBAL (SILWAMED)/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient es_ES
dc.description.bibliographicCitation Garcia-Prats, A.; Campo García, ADD.; Pulido-Velazquez, M. (2016). A hydroeconomic modeling framework for optimal integrated management of forest and water. Water Resources Research. 52(10):8277-8294. https://doi.org/10.1002/2015WR018273 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1002/2015WR018273 es_ES
dc.description.upvformatpinicio 8277 es_ES
dc.description.upvformatpfin 8294 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 52 es_ES
dc.description.issue 10 es_ES
dc.relation.pasarela S\319064 es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Andréassian, V. (2004). Waters and forests: from historical controversy to scientific debate. Journal of Hydrology, 291(1-2), 1-27. doi:10.1016/j.jhydrol.2003.12.015 es_ES
dc.description.references Bargués Tobella, A., Reese, H., Almaw, A., Bayala, J., Malmer, A., Laudon, H., & Ilstedt, U. (2014). The effect of trees on preferential flow and soil infiltrability in an agroforestry parkland in semiarid Burkina Faso. Water Resources Research, 50(4), 3342-3354. doi:10.1002/2013wr015197 es_ES
dc.description.references Barron, O. V., Crosbie, R. S., Dawes, W. R., Charles, S. P., Pickett, T., & Donn, M. J. (2012). Climatic controls on diffuse groundwater recharge across Australia. Hydrology and Earth System Sciences, 16(12), 4557-4570. doi:10.5194/hess-16-4557-2012 es_ES
dc.description.references Bellot, J., Bonet, A., Sanchez, J. ., & Chirino, E. (2001). Likely effects of land use changes on the runoff and aquifer recharge in a semiarid landscape using a hydrological model. Landscape and Urban Planning, 55(1), 41-53. doi:10.1016/s0169-2046(01)00118-9 es_ES
dc.description.references Bellot, J., & Chirino, E. (2013). Hydrobal: An eco-hydrological modelling approach for assessing water balances in different vegetation types in semi-arid areas. Ecological Modelling, 266, 30-41. doi:10.1016/j.ecolmodel.2013.07.002 es_ES
dc.description.references Bent, G. C. (2001). Effects of forest-management activities on runoff components and ground-water recharge to Quabbin Reservoir, central Massachusetts. Forest Ecology and Management, 143(1-3), 115-129. doi:10.1016/s0378-1127(00)00511-9 es_ES
dc.description.references Birol, E., Karousakis, K., & Koundouri, P. (2006). Using a choice experiment to account for preference heterogeneity in wetland attributes: The case of Cheimaditida wetland in Greece. Ecological Economics, 60(1), 145-156. doi:10.1016/j.ecolecon.2006.06.002 es_ES
dc.description.references Birot , Y. P. Marc 2011 3 4 es_ES
dc.description.references Bosch, J. M., & Hewlett, J. D. (1982). A review of catchment experiments to determine the effect of vegetation changes on water yield and evapotranspiration. Journal of Hydrology, 55(1-4), 3-23. doi:10.1016/0022-1694(82)90117-2 es_ES
dc.description.references Brown, A. E., Zhang, L., McMahon, T. A., Western, A. W., & Vertessy, R. A. (2005). A review of paired catchment studies for determining changes in water yield resulting from alterations in vegetation. Journal of Hydrology, 310(1-4), 28-61. doi:10.1016/j.jhydrol.2004.12.010 es_ES
dc.description.references Bruijnzeel, L. A. (2004). Hydrological functions of tropical forests: not seeing the soil for the trees? Agriculture, Ecosystems & Environment, 104(1), 185-228. doi:10.1016/j.agee.2004.01.015 es_ES
dc.description.references Burgess, S. S. O., Adams, M. A., Turner, N. C., Beverly, C. R., Ong, C. K., Khan, A. A. H., & Bleby, T. M. (2001). An improved heat pulse method to measure low and reverse rates of sap flow in woody plants. Tree Physiology, 21(9), 589-598. doi:10.1093/treephys/21.9.589 es_ES
dc.description.references Cai, X., McKinney, D. C., & Lasdon, L. S. (2002). A framework for sustainability analysis in water resources management and application to the Syr Darya Basin. Water Resources Research, 38(6), 21-1-21-14. doi:10.1029/2001wr000214 es_ES
dc.description.references Calabuig-Vila , E. 2012 es_ES
dc.description.references Calder, I. R. (2007). Forests and water—Ensuring forest benefits outweigh water costs. Forest Ecology and Management, 251(1-2), 110-120. doi:10.1016/j.foreco.2007.06.015 es_ES
dc.description.references Chen, C., Eamus, D., Cleverly, J., Boulain, N., Cook, P., Zhang, L., … Yu, Q. (2014). Modelling vegetation water-use and groundwater recharge as affected by climate variability in an arid-zone Acacia savanna woodland. Journal of Hydrology, 519, 1084-1096. doi:10.1016/j.jhydrol.2014.08.032 es_ES
dc.description.references Dawes, W., Ali, R., Varma, S., Emelyanova, I., Hodgson, G., & McFarlane, D. (2012). Modelling the effects of climate and land cover change on groundwater recharge in south-west Western Australia. Hydrology and Earth System Sciences, 16(8), 2709-2722. doi:10.5194/hess-16-2709-2012 es_ES
dc.description.references Del Campo, A. D., Fernandes, T. J. G., & Molina, A. J. (2014). Hydrology-oriented (adaptive) silviculture in a semiarid pine plantation: How much can be modified the water cycle through forest management? European Journal of Forest Research, 133(5), 879-894. doi:10.1007/s10342-014-0805-7 es_ES
dc.description.references FAO 2015 Sustainable Forest Management (SFM) Toolbox http://www.fao.org/sustainable-forest-management/toolbox/sfm-home/en/ es_ES
dc.description.references Gallart, F., & Llorens, P. (2003). Catchment Management under Environmental Change: Impact of Land Cover Change on Water Resources. Water International, 28(3), 334-340. doi:10.1080/02508060308691707 es_ES
dc.description.references Garcia-Prats, A., Antonio, D. C., Tarcísio, F. J. G., & Antonio, M. J. (2015). Development of a Keetch and Byram—Based drought index sensitive to forest management in Mediterranean conditions. Agricultural and Forest Meteorology, 205, 40-50. doi:10.1016/j.agrformet.2015.02.009 es_ES
dc.description.references Gee, G. W., Fayer, M. J., Rockhold, M. L., Wierenga, P. J., Young, M. H., & Andraski, B. J. (1994). Variations in Water Balance and Recharge Potential at Three Western Desert Sites. Soil Science Society of America Journal, 58(1), 63. doi:10.2136/sssaj1994.03615995005800010009x es_ES
dc.description.references Guan, H., Simunek, J., Newman, B. D., & Wilson, J. L. (2010). Modelling investigation of water partitioning at a semiarid ponderosa pine hillslope. Hydrological Processes, 24(9), 1095-1105. doi:10.1002/hyp.7571 es_ES
dc.description.references Harou, J. J., Pulido-Velazquez, M., Rosenberg, D. E., Medellín-Azuara, J., Lund, J. R., & Howitt, R. E. (2009). Hydro-economic models: Concepts, design, applications, and future prospects. Journal of Hydrology, 375(3-4), 627-643. doi:10.1016/j.jhydrol.2009.06.037 es_ES
dc.description.references Heinz, I., Pulido-Velazquez, M., Lund, J. R., & Andreu, J. (2007). Hydro-economic Modeling in River Basin Management: Implications and Applications for the European Water Framework Directive. Water Resources Management, 21(7), 1103-1125. doi:10.1007/s11269-006-9101-8 es_ES
dc.description.references Hernandez-Santana, V., Asbjornsen, H., Sauer, T., Isenhart, T., Schilling, K., & Schultz, R. (2011). Enhanced transpiration by riparian buffer trees in response to advection in a humid temperate agricultural landscape. Forest Ecology and Management, 261(8), 1415-1427. doi:10.1016/j.foreco.2011.01.027 es_ES
dc.description.references Ilstedt, U., Bargués Tobella, A., Bazié, H. R., Bayala, J., Verbeeten, E., Nyberg, G., … Malmer, A. (2016). Intermediate tree cover can maximize groundwater recharge in the seasonally dry tropics. Scientific Reports, 6(1). doi:10.1038/srep21930 es_ES
dc.description.references Jack, B. K., Kousky, C., & Sims, K. R. E. (2008). Designing payments for ecosystem services: Lessons from previous experience with incentive-based mechanisms. Proceedings of the National Academy of Sciences, 105(28), 9465-9470. doi:10.1073/pnas.0705503104 es_ES
dc.description.references Jhorar, R. K., van Dam, J. C., Bastiaanssen, W. G. M., & Feddes, R. A. (2004). Calibration of effective soil hydraulic parameters of heterogeneous soil profiles. Journal of Hydrology, 285(1-4), 233-247. doi:10.1016/j.jhydrol.2003.09.003 es_ES
dc.description.references Koundouri, P. (2004). Current Issues in the Economics of Groundwater Resource Management. Journal of Economic Surveys, 18(5), 703-740. doi:10.1111/j.1467-6419.2004.00234.x es_ES
dc.description.references Lasch, P., Badeck, F.-W., Suckow, F., Lindner, M., & Mohr, P. (2005). Model-based analysis of management alternatives at stand and regional level in Brandenburg (Germany). Forest Ecology and Management, 207(1-2), 59-74. doi:10.1016/j.foreco.2004.10.034 es_ES
dc.description.references Legates, D. R., & McCabe, G. J. (1999). Evaluating the use of «goodness-of-fit» Measures in hydrologic and hydroclimatic model validation. Water Resources Research, 35(1), 233-241. doi:10.1029/1998wr900018 es_ES
dc.description.references Lindner, M., Fitzgerald, J. B., Zimmermann, N. E., Reyer, C., Delzon, S., van der Maaten, E., … Hanewinkel, M. (2014). Climate change and European forests: What do we know, what are the uncertainties, and what are the implications for forest management? Journal of Environmental Management, 146, 69-83. doi:10.1016/j.jenvman.2014.07.030 es_ES
dc.description.references Lund, J. R., Cai, X., & Characklis, G. W. (2006). Economic Engineering of Environmental and Water Resource Systems. Journal of Water Resources Planning and Management, 132(6), 399-402. doi:10.1061/(asce)0733-9496(2006)132:6(399) es_ES
dc.description.references Molina, A. J., & del Campo, A. D. (2012). The effects of experimental thinning on throughfall and stemflow: A contribution towards hydrology-oriented silviculture in Aleppo pine plantations. Forest Ecology and Management, 269, 206-213. doi:10.1016/j.foreco.2011.12.037 es_ES
dc.description.references Mualem, Y. (1976). A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resources Research, 12(3), 513-522. doi:10.1029/wr012i003p00513 es_ES
dc.description.references Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models part I — A discussion of principles. Journal of Hydrology, 10(3), 282-290. doi:10.1016/0022-1694(70)90255-6 es_ES
dc.description.references Nicks , A. D. G. A. Gander 1994 Proceedings of the 5th International Conference on Computers in Agriculture es_ES
dc.description.references Peck, A. J., & Williamson, D. R. (1987). Effects of forest clearing on groundwater. Journal of Hydrology, 94(1-2), 47-65. doi:10.1016/0022-1694(87)90032-1 es_ES
dc.description.references Pulido-Velázquez, M., Andreu, J., & Sahuquillo, A. (2006). Economic Optimization of Conjunctive Use of Surface Water and Groundwater at the Basin Scale. Journal of Water Resources Planning and Management, 132(6), 454-467. doi:10.1061/(asce)0733-9496(2006)132:6(454) es_ES
dc.description.references Pulido-Velazquez, M., Andreu, J., Sahuquillo, A., & Pulido-Velazquez, D. (2008). Hydro-economic river basin modelling: The application of a holistic surface–groundwater model to assess opportunity costs of water use in Spain. Ecological Economics, 66(1), 51-65. doi:10.1016/j.ecolecon.2007.12.016 es_ES
dc.description.references Pulido-Velazquez, M., Alvarez-Mendiola, E., & Andreu, J. (2013). Design of Efficient Water Pricing Policies Integrating Basinwide Resource Opportunity Costs. Journal of Water Resources Planning and Management, 139(5), 583-592. doi:10.1061/(asce)wr.1943-5452.0000262 es_ES
dc.description.references Scanlon, B. R., Reedy, R. C., Stonestrom, D. A., Prudic, D. E., & Dennehy, K. F. (2005). Impact of land use and land cover change on groundwater recharge and quality in the southwestern US. Global Change Biology, 11(10), 1577-1593. doi:10.1111/j.1365-2486.2005.01026.x es_ES
dc.description.references Scanlon, B. R., Keese, K. E., Flint, A. L., Flint, L. E., Gaye, C. B., Edmunds, W. M., & Simmers, I. (2006). Global synthesis of groundwater recharge in semiarid and arid regions. Hydrological Processes, 20(15), 3335-3370. doi:10.1002/hyp.6335 es_ES
dc.description.references Schaap, M. G., Leij, F. J., & van Genuchten, M. T. (2001). rosetta : a computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. Journal of Hydrology, 251(3-4), 163-176. doi:10.1016/s0022-1694(01)00466-8 es_ES
dc.description.references Sprintsin, M., Cohen, S., Maseyk, K., Rotenberg, E., Grünzweig, J., Karnieli, A., … Yakir, D. (2011). Long term and seasonal courses of leaf area index in a semi-arid forest plantation. Agricultural and Forest Meteorology, 151(5), 565-574. doi:10.1016/j.agrformet.2011.01.001 es_ES
dc.description.references Thornthwaite, C. W. (1948). An Approach toward a Rational Classification of Climate. Geographical Review, 38(1), 55. doi:10.2307/210739 es_ES
dc.description.references Ungar, E. D., Rotenberg, E., Raz-Yaseef, N., Cohen, S., Yakir, D., & Schiller, G. (2013). Transpiration and annual water balance of Aleppo pine in a semiarid region: Implications for forest management. Forest Ecology and Management, 298, 39-51. doi:10.1016/j.foreco.2013.03.003 es_ES
dc.description.references Van Dijk, A. I. J. M., & Keenan, R. J. (2007). Planted forests and water in perspective. Forest Ecology and Management, 251(1-2), 1-9. doi:10.1016/j.foreco.2007.06.010 es_ES
dc.description.references Van Dijk, A. I. J. M., Hairsine, P. B., Arancibia, J. P., & Dowling, T. I. (2007). Reforestation, water availability and stream salinity: A multi-scale analysis in the Murray-Darling Basin, Australia. Forest Ecology and Management, 251(1-2), 94-109. doi:10.1016/j.foreco.2007.06.012 es_ES
dc.description.references Van Genuchten, M. T. (1980). A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils1. Soil Science Society of America Journal, 44(5), 892. doi:10.2136/sssaj1980.03615995004400050002x es_ES
dc.description.references Van Genuchten, M. T., & Jury, W. A. (1987). Progress in unsaturated flow and transport modeling. Reviews of Geophysics, 25(2), 135. doi:10.1029/rg025i002p00135 es_ES
dc.description.references Wang, X.-P., Berndtsson, R., Li, X.-R., & Kang, E.-S. (2004). Water balance change for a re-vegetated xerophyte shrub area/Changement du bilan hydrique d’une zone replantée d’arbustes xérophiles. Hydrological Sciences Journal, 49(2). doi:10.1623/hysj.49.2.283.34841 es_ES
dc.description.references West, P. W. (2009). Tree and Forest Measurement. doi:10.1007/978-3-540-95966-3 es_ES
dc.description.references Williams, D. G., Cable, W., Hultine, K., Hoedjes, J. C. B., Yepez, E. A., Simonneaux, V., … Timouk, F. (2004). Evapotranspiration components determined by stable isotope, sap flow and eddy covariance techniques. Agricultural and Forest Meteorology, 125(3-4), 241-258. doi:10.1016/j.agrformet.2004.04.008 es_ES
dc.description.references Willmott, C. J. (1981). ON THE VALIDATION OF MODELS. Physical Geography, 2(2), 184-194. doi:10.1080/02723646.1981.10642213 es_ES
dc.description.references Willmott, C. J. (1984). On the Evaluation of Model Performance in Physical Geography. Spatial Statistics and Models, 443-460. doi:10.1007/978-94-017-3048-8_23 es_ES
dc.description.references Wyatt, C. J. W., O’Donnell, F. C., & Springer, A. E. (2014). Semi-Arid Aquifer Responses to Forest Restoration Treatments and Climate Change. Groundwater, 53(2), 207-216. doi:10.1111/gwat.12184 es_ES
dc.description.references Zavala, M. A., Espelta, J. M., & Retana, J. (2000). Constraints and trade-offs in Mediterranean plant communities: The case of holm oak-Aleppo pine forests. The Botanical Review, 66(1), 119-149. doi:10.1007/bf02857785 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem