- -

Iron(III) Triflimide as a catalytic substitute for gold(I) in hydroaddition reactions to unsaturated carbon-carbon bonds

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Iron(III) Triflimide as a catalytic substitute for gold(I) in hydroaddition reactions to unsaturated carbon-carbon bonds

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Cabrero Antonino, Jose Ramón es_ES
dc.contributor.author Leyva Perez, Antonio es_ES
dc.contributor.author Corma Canós, Avelino es_ES
dc.date.accessioned 2018-02-22T05:07:48Z
dc.date.available 2018-02-22T05:07:48Z
dc.date.issued 2013 es_ES
dc.identifier.issn 0947-6539 es_ES
dc.identifier.uri http://hdl.handle.net/10251/98265
dc.description.abstract [EN] In this work it is shown that iron(III) and gold(I) triflimide efficiently catalyze the hydroaddition of a wide array of nucleophiles including water, alcohols, thiols, amines, alkynes, and alkenes to multiple CC bonds. The study of the catalytic activity and selectivity of iron(III), gold(I), and BrOnsted triflimides has unveiled that iron(III) triflimide [Fe(NTf2)3] is a robust catalyst under heating conditions, whereas gold(I) triflimide, even stabilized by PPh3, readily decomposes at 80 degrees C and releases triflimidic acid (HNTf2) that can catalyze the corresponding reaction, as shown by in situ 19F, 15N, and 31PNMR spectroscopy. The results presented here demonstrate that each of the two catalyst types has weaknesses and strengths and complement each other. Iron(III) triflimide can act as a substitute of gold(I) triflimide as a catalyst for hydroaddition reactions to unsaturated carbon-carbon bonds. es_ES
dc.description.sponsorship The work has been supported by Consolider-Ingenio 2010 (proyecto MULTICAT). J.R.C.A. thanks MCIINN for the concession of a pre-doctoral FPU fellowship. A. L. P. thanks ITQ for financial support. en_EN
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof Chemistry - A European Journal es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject BrOnsted catalysis es_ES
dc.subject Gold es_ES
dc.subject Hydroaddition reactions es_ES
dc.subject Iron es_ES
dc.subject Lewis catalysis es_ES
dc.subject.classification QUIMICA ANALITICA es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Iron(III) Triflimide as a catalytic substitute for gold(I) in hydroaddition reactions to unsaturated carbon-carbon bonds es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/chem.201300386 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Cabrero Antonino, JR.; Leyva Perez, A.; Corma Canós, A. (2013). Iron(III) Triflimide as a catalytic substitute for gold(I) in hydroaddition reactions to unsaturated carbon-carbon bonds. Chemistry - A European Journal. 19(26):8627-8633. https://doi.org/10.1002/chem.201300386 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/chem.201300386 es_ES
dc.description.upvformatpinicio 8627 es_ES
dc.description.upvformatpfin 8633 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 19 es_ES
dc.description.issue 26 es_ES
dc.relation.pasarela S\258008 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad
dc.contributor.funder Ministerio de Ciencia e Innovación
dc.contributor.funder Instituto de Salud Carlos III
dc.description.references Brenzovich, W. E. (2012). Gold in der Totalsynthese: Alkine als Carbonylersatz. Angewandte Chemie, 124(36), 9063-9065. doi:10.1002/ange.201204598 es_ES
dc.description.references Brenzovich, W. E. (2012). Gold in Total Synthesis: Alkynes as Carbonyl Surrogates. Angewandte Chemie International Edition, 51(36), 8933-8935. doi:10.1002/anie.201204598 es_ES
dc.description.references Oliver-Meseguer, J., Cabrero-Antonino, J. R., Dominguez, I., Leyva-Perez, A., & Corma, A. (2012). Small Gold Clusters Formed in Solution Give Reaction Turnover Numbers of 107 at Room Temperature. Science, 338(6113), 1452-1455. doi:10.1126/science.1227813 es_ES
dc.description.references Corma, A., Leyva-Pérez, A., & Sabater, M. J. (2011). Gold-Catalyzed Carbon−Heteroatom Bond-Forming Reactions. Chemical Reviews, 111(3), 1657-1712. doi:10.1021/cr100414u es_ES
dc.description.references Krause, N., & Winter, C. (2011). Gold-Catalyzed Nucleophilic Cyclization of Functionalized Allenes: A Powerful Access to Carbo- and Heterocycles. Chemical Reviews, 111(3), 1994-2009. doi:10.1021/cr1004088 es_ES
dc.description.references Huang, H., Zhou, Y., & Liu, H. (2011). Recent advances in the gold-catalyzed additions to C–C multiple bonds. Beilstein Journal of Organic Chemistry, 7, 897-936. doi:10.3762/bjoc.7.103 es_ES
dc.description.references Hashmi, A. S. K. (2010). Homogene Gold-Katalyse jenseits von Vermutungen und Annahmen - charakterisierte Intermediate. Angewandte Chemie, 122(31), 5360-5369. doi:10.1002/ange.200907078 es_ES
dc.description.references Hashmi, A. S. K. (2010). Homogeneous Gold Catalysis Beyond Assumptions and Proposals-Characterized Intermediates. Angewandte Chemie International Edition, 49(31), 5232-5241. doi:10.1002/anie.200907078 es_ES
dc.description.references Beaumont, S. K., Kyriakou, G., & Lambert, R. M. (2010). Identity of the Active Site in Gold Nanoparticle-Catalyzed Sonogashira Coupling of Phenylacetylene and Iodobenzene. Journal of the American Chemical Society, 132(35), 12246-12248. doi:10.1021/ja1063179 es_ES
dc.description.references Marion, N., Ramón, R. S., & Nolan, S. P. (2009). [(NHC)AuI]-Catalyzed Acid-Free Alkyne Hydration at Part-per-Million Catalyst Loadings. Journal of the American Chemical Society, 131(2), 448-449. doi:10.1021/ja809403e es_ES
dc.description.references Grirrane, A., Corma, A., & Garcia, H. (2008). Gold-Catalyzed Synthesis of Aromatic Azo Compounds from Anilines and Nitroaromatics. Science, 322(5908), 1661-1664. doi:10.1126/science.1166401 es_ES
dc.description.references Corma, A., & Garcia, H. (2008). Supported gold nanoparticles as catalysts for organic reactions. Chemical Society Reviews, 37(9), 2096. doi:10.1039/b707314n es_ES
dc.description.references González-Arellano, C., Abad, A., Corma, A., García, H., Iglesias, M., & Sánchez, F. (2007). Catalysis by Gold(I) and Gold(III): A Parallelism between Homo- and Heterogeneous Catalysts for Copper-Free Sonogashira Cross-Coupling Reactions. Angewandte Chemie, 119(9), 1558-1560. doi:10.1002/ange.200604746 es_ES
dc.description.references González-Arellano, C., Abad, A., Corma, A., García, H., Iglesias, M., & Sánchez, F. (2007). Catalysis by Gold(I) and Gold(III): A Parallelism between Homo- and Heterogeneous Catalysts for Copper-Free Sonogashira Cross-Coupling Reactions. Angewandte Chemie International Edition, 46(9), 1536-1538. doi:10.1002/anie.200604746 es_ES
dc.description.references Hashmi, A. S. K. (2007). Gold-Catalyzed Organic Reactions. Chemical Reviews, 107(7), 3180-3211. doi:10.1021/cr000436x es_ES
dc.description.references Wienhöfer, G., Westerhaus, F. A., Jagadeesh, R. V., Junge, K., Junge, H., & Beller, M. (2012). Selective iron-catalyzed transfer hydrogenation of terminal alkynes. Chemical Communications, 48(40), 4827. doi:10.1039/c2cc31091k es_ES
dc.description.references Cabrero-Antonino, J. R., Leyva-Pérez, A., & Corma, A. (2012). Iron-Catalysed Markovnikov Hydrothiolation of Styrenes. Advanced Synthesis & Catalysis, 354(4), 678-687. doi:10.1002/adsc.201100731 es_ES
dc.description.references Cabrero-Antonino, J. R., Leyva-Pérez, A., & Corma, A. (2012). Regioselective Hydration of Alkynes by Iron(III) Lewis/Brønsted Catalysis. Chemistry - A European Journal, 18(35), 11107-11114. doi:10.1002/chem.201200580 es_ES
dc.description.references Boddien, A., Mellmann, D., Gartner, F., Jackstell, R., Junge, H., Dyson, P. J., … Beller, M. (2011). Efficient Dehydrogenation of Formic Acid Using an Iron Catalyst. Science, 333(6050), 1733-1736. doi:10.1126/science.1206613 es_ES
dc.description.references Sun, C.-L., Li, B.-J., & Shi, Z.-J. (2011). Direct C−H Transformation via Iron Catalysis. Chemical Reviews, 111(3), 1293-1314. doi:10.1021/cr100198w es_ES
dc.description.references Junge, K., Schröder, K., & Beller, M. (2011). Homogeneous catalysis using iron complexes: recent developments in selective reductions. Chemical Communications, 47(17), 4849. doi:10.1039/c0cc05733a es_ES
dc.description.references Zhou, S., Fleischer, S., Junge, K., Das, S., Addis, D., & Beller, M. (2010). Asymmetrische Synthese von Aminen: eine allgemeine und effiziente eisenkatalysierte enantioselektive Transferhydrierung von Iminen. Angewandte Chemie, 122(44), 8298-8302. doi:10.1002/ange.201002456 es_ES
dc.description.references Zhou, S., Fleischer, S., Junge, K., Das, S., Addis, D., & Beller, M. (2010). Enantioselective Synthesis of Amines: General, Efficient Iron-Catalyzed Asymmetric Transfer Hydrogenation of Imines. Angewandte Chemie International Edition, 49(44), 8121-8125. doi:10.1002/anie.201002456 es_ES
dc.description.references Cabrero-Antonino, J. R., Leyva-Pérez, A., & Corma, A. (2010). Iron-Catalysed Regio- and Stereoselective Head-to-Tail Dimerisation of Styrenes. Advanced Synthesis & Catalysis, 352(10), 1571-1576. doi:10.1002/adsc.201000096 es_ES
dc.description.references Zhou, S., Junge, K., Addis, D., Das, S., & Beller, M. (2009). A Convenient and General Iron-Catalyzed Reduction of Amides to Amines. Angewandte Chemie, 121(50), 9671-9674. doi:10.1002/ange.200904677 es_ES
dc.description.references Zhou, S., Junge, K., Addis, D., Das, S., & Beller, M. (2009). A Convenient and General Iron-Catalyzed Reduction of Amides to Amines. Angewandte Chemie International Edition, 48(50), 9507-9510. doi:10.1002/anie.200904677 es_ES
dc.description.references Kohno, K., Nakagawa, K., Yahagi, T., Choi, J.-C., Yasuda, H., & Sakakura, T. (2009). Fe(OTf)3-Catalyzed Addition of sp C−H Bonds to Olefins. Journal of the American Chemical Society, 131(8), 2784-2785. doi:10.1021/ja8090593 es_ES
dc.description.references Correa, A., García Mancheño, O., & Bolm, C. (2008). Iron-catalysed carbon–heteroatom and heteroatom–heteroatom bond forming processes. Chemical Society Reviews, 37(6), 1108. doi:10.1039/b801794h es_ES
dc.description.references Michaux, J., Terrasson, V., Marque, S., Wehbe, J., Prim, D., & Campagne, J.-M. (2007). Intermolecular FeCl3-Catalyzed Hydroamination of Styrenes. European Journal of Organic Chemistry, 2007(16), 2601-2603. doi:10.1002/ejoc.200700023 es_ES
dc.description.references Bolm, C., Legros, J., Le Paih, J., & Zani, L. (2004). Iron-Catalyzed Reactions in Organic Synthesis. Chemical Reviews, 104(12), 6217-6254. doi:10.1021/cr040664h es_ES
dc.description.references Fürstner, A., Leitner, A., Méndez, M., & Krause, H. (2002). Iron-Catalyzed Cross-Coupling Reactions. Journal of the American Chemical Society, 124(46), 13856-13863. doi:10.1021/ja027190t es_ES
dc.description.references Kischel, J., Jovel, I., Mertins, K., Zapf, A., & Beller, M. (2006). A Convenient FeCl3-Catalyzed Hydroarylation of Styrenes. Organic Letters, 8(1), 19-22. doi:10.1021/ol0523143 es_ES
dc.description.references Patil, N. T., Kavthe, R. D., & Shinde, V. S. (2012). Transition metal-catalyzed addition of C-, N- and O-nucleophiles to unactivated C–C multiple bonds. Tetrahedron, 68(39), 8079-8146. doi:10.1016/j.tet.2012.05.125 es_ES
dc.description.references Beller, M., Seayad, J., Tillack, A., & Jiao, H. (2004). Katalytische Markownikow- und Anti-Markownikow-Funktionalisierung von Alkenen und Alkinen. Angewandte Chemie, 116(26), 3448-3479. doi:10.1002/ange.200300616 es_ES
dc.description.references Beller, M., Seayad, J., Tillack, A., & Jiao, H. (2004). Catalytic Markovnikov and anti-Markovnikov Functionalization of Alkenes and Alkynes: Recent Developments and Trends. Angewandte Chemie International Edition, 43(26), 3368-3398. doi:10.1002/anie.200300616 es_ES
dc.description.references Hashmi, A. S. K. (2007). Homogeneous gold catalysis: The role of protons. Catalysis Today, 122(3-4), 211-214. doi:10.1016/j.cattod.2006.10.006 es_ES
dc.description.references Hashmi, A. S. K., Schwarz, L., Rubenbauer, P., & Blanco, M. C. (2006). The Condensation of Carbonyl Compounds with Electron-Rich Arenes: Mercury, Thallium, Gold or a Proton? Advanced Synthesis & Catalysis, 348(6), 705-708. doi:10.1002/adsc.200505464 es_ES
dc.description.references Williamson, K. S., & Yoon, T. P. (2012). Iron Catalyzed Asymmetric Oxyamination of Olefins. Journal of the American Chemical Society, 134(30), 12370-12373. doi:10.1021/ja3046684 es_ES
dc.description.references Hashmi, A. S. K., Braun, I., Nösel, P., Schädlich, J., Wieteck, M., Rudolph, M., & Rominger, F. (2012). Eine einfache Gold-katalysierte Synthese von Benzofulvenen -gem-diaurierte Spezies als «Instant-Dual-Activation»-Präkatalysatoren. Angewandte Chemie, 124(18), 4532-4536. doi:10.1002/ange.201109183 es_ES
dc.description.references Hashmi, A. S. K., Braun, I., Nösel, P., Schädlich, J., Wieteck, M., Rudolph, M., & Rominger, F. (2012). Simple Gold-Catalyzed Synthesis of Benzofulvenes-gem-Diaurated Species as «Instant Dual-Activation» Precatalysts. Angewandte Chemie International Edition, 51(18), 4456-4460. doi:10.1002/anie.201109183 es_ES
dc.description.references Antoniotti, S., Dalla, V., & Duñach, E. (2010). Metalltriflimidate sind bessere Katalysatoren für die organische Synthese als Metalltriflate - der Effekt eines stark delokalisierten Gegenions. Angewandte Chemie, 122(43), 8032-8060. doi:10.1002/ange.200906407 es_ES
dc.description.references Antoniotti, S., Dalla, V., & Duñach, E. (2010). Metal Triflimidates: Better than Metal Triflates as Catalysts in Organic Synthesis-The Effect of a Highly Delocalized Counteranion. Angewandte Chemie International Edition, 49(43), 7860-7888. doi:10.1002/anie.200906407 es_ES
dc.description.references Ricard, L., & Gagosz, F. (2007). Synthesis and Reactivity of Air-Stable N-Heterocyclic Carbene Gold(I) Bis(trifluoromethanesulfonyl)imidate Complexes. Organometallics, 26(19), 4704-4707. doi:10.1021/om7006002 es_ES
dc.description.references Dang, T. T., Boeck, F., & Hintermann, L. (2011). Hidden Brønsted Acid Catalysis: Pathways of Accidental or Deliberate Generation of Triflic Acid from Metal Triflates. The Journal of Organic Chemistry, 76(22), 9353-9361. doi:10.1021/jo201631x es_ES
dc.description.references Taylor, J. G., Adrio, L. A., & Hii, K. K. (Mimi). (2010). Hydroamination reactions by metal triflates: Brønsted acid vs. metal catalysis? Dalton Trans., 39(5), 1171-1175. doi:10.1039/b918970j es_ES
dc.description.references Kovács, G., Lledós, A., & Ujaque, G. (2010). Mechanistic Comparison of Acid- and Gold(I)-Catalyzed Nucleophilic Addition Reactions to Olefins. Organometallics, 29(22), 5919-5926. doi:10.1021/om1007192 es_ES
dc.description.references Li, Z., Zhang, J., Brouwer, C., Yang, C.-G., Reich, N. W., & He, C. (2006). Brønsted Acid Catalyzed Addition of Phenols, Carboxylic Acids, and Tosylamides to Simple Olefins. Organic Letters, 8(19), 4175-4178. doi:10.1021/ol0610035 es_ES
dc.description.references (s. f.). doi:10.1021/ol061174 es_ES
dc.description.references Wabnitz, T. C., Yu, J.-Q., & Spencer, J. B. (2004). Evidence That Protons Can Be the Active Catalysts in Lewis Acid Mediated Hetero-Michael Addition Reactions. Chemistry - A European Journal, 10(2), 484-493. doi:10.1002/chem.200305407 es_ES
dc.description.references Penzien, J., Su, R. Q., & Müller, T. E. (2002). The role of protons in hydroamination reactions involving homogeneous and heterogeneous catalysts. Journal of Molecular Catalysis A: Chemical, 182-183, 489-498. doi:10.1016/s1381-1169(01)00496-4 es_ES
dc.description.references Weïwer, M., Coulombel, L., & Duñach, E. (2006). Regioselective indium(iii) trifluoromethanesulfonate-catalyzed hydrothiolation of non-activated olefins. Chem. Commun., (3), 332-334. doi:10.1039/b513946e es_ES
dc.description.references Leyva, A., & Corma, A. (2009). Isolable Gold(I) Complexes Having One Low-Coordinating Ligand as Catalysts for the Selective Hydration of Substituted Alkynes at Room Temperature without Acidic Promoters. The Journal of Organic Chemistry, 74(5), 2067-2074. doi:10.1021/jo802558e es_ES
dc.description.references Leyva, A., & Corma, A. (2009). Reusable Gold(I) Catalysts with Unique Regioselectivity for Intermolecular Hydroamination of Alkynes. Advanced Synthesis & Catalysis, 351(17), 2876-2886. doi:10.1002/adsc.200900491 es_ES
dc.description.references Arvai, R., Toulgoat, F., Langlois, B. R., Sanchez, J.-Y., & Médebielle, M. (2009). A simple access to metallic or onium bistrifluoromethanesulfonimide salts. Tetrahedron, 65(27), 5361-5368. doi:10.1016/j.tet.2009.04.068 es_ES
dc.description.references Hashmi, A. S. K., Blanco, M. C., Fischer, D., & Bats, J. W. (2006). Gold Catalysis: Evidence for the In-situ Reduction of Gold(III) During the Cyclization of Allenyl Carbinols. European Journal of Organic Chemistry, 2006(6), 1387-1389. doi:10.1002/ejoc.200600009 es_ES
dc.description.references Morita, N., & Krause, N. (2006). Erste goldkatalysierte C-S-Bindungsknüpfung: Cycloisomerisierung von α-Thioallenen zu 2,5-Dihydrothiophenen. Angewandte Chemie, 118(12), 1930-1933. doi:10.1002/ange.200503846 es_ES
dc.description.references Morita, N., & Krause, N. (2006). The First Gold-Catalyzed CS Bond Formation: Cycloisomerization of α-Thioallenes to 2,5-Dihydrothiophenes. Angewandte Chemie International Edition, 45(12), 1897-1899. doi:10.1002/anie.200503846 es_ES
dc.description.references Santos, L. L., Ruiz, V. R., Sabater, M. J., & Corma, A. (2008). Regioselective transformation of alkynes into cyclic acetals and thioacetals with a gold(I) catalyst: comparison with Brønsted acid catalysts. Tetrahedron, 64(34), 7902-7909. doi:10.1016/j.tet.2008.06.032 es_ES
dc.description.references Hashimoto, T., Kutubi, S., Izumi, T., Rahman, A., & Kitamura, T. (2011). Catalytic hydroarylation of alkynes with arenes in the presence of FeCl3 and AgOTf. Journal of Organometallic Chemistry, 696(1), 99-105. doi:10.1016/j.jorganchem.2010.08.009 es_ES
dc.description.references Corma, A., Ruiz, V. R., Leyva-Pérez, A., & Sabater, M. J. (2010). Regio- and Stereoselective Intermolecular Hydroalkoxylation of Alkynes Catalysed by Cationic Gold(I) Complexes. Advanced Synthesis & Catalysis, 352(10), 1701-1710. doi:10.1002/adsc.201000094 es_ES
dc.description.references Hashmi, A. S. K., & Rudolph, M. (2008). Gold catalysis in total synthesis. Chemical Society Reviews, 37(9), 1766. doi:10.1039/b615629k es_ES
dc.description.references Leyva-Pérez, A., & Corma, A. (2011). Ähnlichkeiten und Unterschiede innerhalb der «relativistischen» Triade Gold, Platin und Quecksilber in der Katalyse. Angewandte Chemie, 124(3), 636-658. doi:10.1002/ange.201101726 es_ES
dc.description.references Leyva-Pérez, A., & Corma, A. (2011). Similarities and Differences between the «Relativistic» Triad Gold, Platinum, and Mercury in Catalysis. Angewandte Chemie International Edition, 51(3), 614-635. doi:10.1002/anie.201101726 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem