Mostrar el registro sencillo del ítem
dc.contributor.author | Cárcel González, Bernabé | es_ES |
dc.contributor.author | Cárcel González, Alfonso Cristóbal | es_ES |
dc.contributor.author | Arrue-Burillo, Paloma | es_ES |
dc.date.accessioned | 2018-02-22T05:11:38Z | |
dc.date.available | 2018-02-22T05:11:38Z | |
dc.date.issued | 2010 | es_ES |
dc.identifier.issn | 1013-9826 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/98267 | |
dc.description.abstract | [EN] Creep behaviour of closed cell aluminium foams and transitions from power law to power law breakdown (PLB) creep regimes are investigated from results of stress relaxation tests (SRT) carried out on Alporas foams with densities between 0.20 to 0.32 g/cm(3). Tests were carried out at temperatures between 200 degrees C and 300 degrees C and stress relaxation was measured from the collapse stress under compression of the foams. Under similar foam density, temperature and stress conditions, the values of strain rate calculated from SRT tests were of the same order of magnitude than those previously reported in the literature from conventional constant load creep tests. Under stress values close to the collapse stress, the creep mechanism seems to follow a PLB regime, with values of the power law exponent n=10-17, much higher than those corresponding to the power law creep in the solid material (n=4.4-6.5) and with activation energy values close to Q = 150 KJ/mol. Having in mind the limitations of available creep models for closed cell foams and the need for additional experimental results, the use of SRT testing would offer advantages for the assessment of the high temperature behaviour of aluminium foams, due to its lower testing times and reduced experimental effort. | es_ES |
dc.description.sponsorship | Authors gratefully acknowledge the financial support of the Spanish Ministry of Science and Feder UE Funds to the research project MAT 2006-13347-C03-03. | |
dc.language | Inglés | es_ES |
dc.publisher | TRANS TECH PUBLICATION | es_ES |
dc.relation.ispartof | KEY ENGINEERING MATERIALS | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Creep | es_ES |
dc.subject | Aluminium | es_ES |
dc.subject | Metal foams | es_ES |
dc.subject | Stress relaxation | es_ES |
dc.subject | Power law creep | es_ES |
dc.subject.classification | CONSTRUCCIONES ARQUITECTONICAS | es_ES |
dc.subject.classification | CIENCIA DE LOS MATERIALES E INGENIERIA METALURGICA | es_ES |
dc.title | Creep behaviour of closed cell aluminium foams from stress relaxation tests | es_ES |
dc.type | Artículo | es_ES |
dc.type | Comunicación en congreso | es_ES |
dc.identifier.doi | 10.4028/www.scientific.net/KEM.423.131 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MEC//MAT2006-13347-C03-03/ES/FABRICACION Y CARACTERIZACION DE ESPUMAS DE ALUMINIO OBTENIDAS MEDIANTE TECNOLOGIASAS DE COSTE MEJORADO/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Construcciones Arquitectónicas - Departament de Construccions Arquitectòniques | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials | es_ES |
dc.description.bibliographicCitation | Cárcel González, B.; Cárcel González, AC.; Arrue-Burillo, P. (2010). Creep behaviour of closed cell aluminium foams from stress relaxation tests. KEY ENGINEERING MATERIALS. 423:131-136. https://doi.org/10.4028/www.scientific.net/KEM.423.131 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.conferencename | XI Congreso Nacional de Propiedades Mecánicas de Sólidos (PMS) | es_ES |
dc.relation.conferencedate | September 09-12,2008 | es_ES |
dc.relation.conferenceplace | Cádiz, España | es_ES |
dc.relation.publisherversion | http://doi.org/10.4028/www.scientific.net/KEM.423.131 | es_ES |
dc.description.upvformatpinicio | 131 | es_ES |
dc.description.upvformatpfin | 136 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 423 | es_ES |
dc.relation.pasarela | S\39769 | es_ES |
dc.contributor.funder | Ministerio de Educación | es_ES |
dc.description.references | Banhart J. Manufacture, characterization and application of cellular metals and metal foams. Progress in Materials Science 46 (2001) 559-632. | es_ES |
dc.description.references | Gibson L.J. and Ashby F. Cellular solids Structure and properties Cambridge Solid State Science Series. Cambridge University Press 2ed (1997). | es_ES |
dc.description.references | Ashby M.F. Evans A. Fleck N.A. Gibson L.J. Hutchinson J. W , Wadley H.N.G. Metal Foams: A design guide. Ed. Butterworth-Heinemann (2000). | es_ES |
dc.description.references | Andrews E.W. Huang J.S. Gibson L.J. Creep behaviour of a closed cell aluminium foam. Acta Mater. Vol 37, 10 (1999) pp.2927-2935. | es_ES |
dc.description.references | Haag M. Wanner A. Clames H. Zhang P. Kraft O. Arzt E. Creep of aluminium based closed cell foams. Met. and Mat. Trans. A Vol. 34A (2003) 2809-2817. | es_ES |
dc.description.references | Andrews E.W., Gibson L. J Ashby M.F. The creep of cellular solids. Acta Mater. Vol. 47, 10 p.2853 (1999). | es_ES |
dc.description.references | Hodge A.M., Dunand, D.C. Measurement and modelling of creep in open cell NiAl foams. Metall. Mater. Trans. A 34A, pp.2353-2363 (2003). | es_ES |
dc.description.references | Woodford D.A. Test methods for accelerated development, design and life assessment of high temperature materials. Mater. Desig, Vol. 14 (4) 1993 pp.231-242. | es_ES |
dc.description.references | Woodford D. A Stress relaxation testing ASM Handbook Vol. 8(2000) pp.398-404. | es_ES |
dc.description.references | McCarthy P. R, Robertson D. G, Orr J, and Strang A. Recent Developments in stress relaxation methodologies within Europe. Key Eng. Mat. Vols 171-174 (2000) 9-16. | es_ES |
dc.description.references | Hufnagel W. Manual del Aluminio (1). Ed. Reverté - Spain- (2004) p.105. | es_ES |
dc.description.references | Frost H. J and Ashby M.F. Deformation Mechanism Maps. Pergamon Press Oxford UK (1982). | es_ES |
dc.description.references | Andrews E. W Gibson L.J. The role of cellular structure in creep of two-dimensional cellular solids. Mat. Sci. and Eng. A303 (2001). | es_ES |