Mostrar el registro sencillo del ítem
dc.contributor.author | Pineda-Sanchez, Manuel | es_ES |
dc.contributor.author | Sapena-Bano, Angel | es_ES |
dc.contributor.author | Pérez-Cruz, Juan | es_ES |
dc.contributor.author | Martinez-Roman, Javier | es_ES |
dc.contributor.author | Puche-Panadero, Rubén | es_ES |
dc.contributor.author | Riera-Guasp, Martín | es_ES |
dc.date.accessioned | 2018-02-22T05:13:45Z | |
dc.date.available | 2018-02-22T05:13:45Z | |
dc.date.issued | 2016 | es_ES |
dc.identifier.issn | 0332-1649 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/98268 | |
dc.description.abstract | [EN] Originality/value - The PGD is a promising new numerical procedure that has been applied successfully in different fields. In this paper, this novel technique is applied to find the DC and AC internal inductance of a conductor with rectangular cross-section, using very dense and large one-dimensional meshes. The proposed method requires very limited memory resources, is very fast, can be programmed using a very simple code, and gives the value of the AC inductance for a complete range of frequencies in a single simulation. The proposed approach can be extended to arbitrary conductor shapes and complex multiconductor lines to further exploit the advantages of the PGD. | es_ES |
dc.description.sponsorship | This work was supported by the Spanish "Ministerio de Economia y Competitividad" in the framework of the "Programa Estatal de Investigacion, Desarrollo e Innovacion Orientada a los Retos de la Sociedad" (project reference DPI2014-60881-R). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Emerald | es_ES |
dc.relation.ispartof | COMPEL The International Journal for Computation and Mathematics in Electrical and Electronic Engineering | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Eddy current | es_ES |
dc.subject | Applied electromagnetism | es_ES |
dc.subject | Inductance | es_ES |
dc.subject | Inductor design | es_ES |
dc.subject | Proper generalized decomposition | es_ES |
dc.subject | Skin effect | es_ES |
dc.subject.classification | INGENIERIA ELECTRICA | es_ES |
dc.title | Internal inductance of a conductor of rectangular cross-section using the proper generalized decomposition | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1108/COMPEL-03-2016-0124 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//DPI2014-60881-R/ES/VALUACION DE LA VIABILIDAD DE UN NUEVO PLANTEAMIENTO PARA EL SISTEMA DE DIAGNOSTICO DE AVERIAS EN LOS AEROGENERADORES/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Eléctrica - Departament d'Enginyeria Elèctrica | es_ES |
dc.description.bibliographicCitation | Pineda-Sanchez, M.; Sapena-Bano, A.; Pérez-Cruz, J.; Martinez-Roman, J.; Puche-Panadero, R.; Riera-Guasp, M. (2016). Internal inductance of a conductor of rectangular cross-section using the proper generalized decomposition. COMPEL The International Journal for Computation and Mathematics in Electrical and Electronic Engineering. 35(6):2007-2021. doi:10.1108/COMPEL-03-2016-0124 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1108/COMPEL-03-2016-0124 | es_ES |
dc.description.upvformatpinicio | 2007 | es_ES |
dc.description.upvformatpfin | 2021 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 35 | es_ES |
dc.description.issue | 6 | es_ES |
dc.relation.pasarela | S\326046 | es_ES |
dc.contributor.funder | Ministerio de Economía, Industria y Competitividad | es_ES |
dc.description.references | Ammar, A., Huerta, A., Chinesta, F., Cueto, E., & Leygue, A. (2014). Parametric solutions involving geometry: A step towards efficient shape optimization. Computer Methods in Applied Mechanics and Engineering, 268, 178-193. doi:10.1016/j.cma.2013.09.003 | es_ES |
dc.description.references | Antonini, G., Orlandi, A., & Paul, C. R. (1999). Internal impedance of conductors of rectangular cross section. IEEE Transactions on Microwave Theory and Techniques, 47(7), 979-985. doi:10.1109/22.775429 | es_ES |
dc.description.references | Berleze, S. L. M., & Robert, R. (2003). Skin and proximity effects in nonmagnetic conductors. IEEE Transactions on Education, 46(3), 368-372. doi:10.1109/te.2003.814591 | es_ES |
dc.description.references | Brandao Faria, J. A. M., & Raven, M. S. (2013). ON THE SUCCESS OF ELECTROMAGNETIC ANALYTICAL APPROACHES TO FULL TIME-DOMAIN FORMULATION OF SKIN EFFECT PHENOMENA. Progress In Electromagnetics Research M, 31, 29-43. doi:10.2528/pierm13042405 | es_ES |
dc.description.references | Brito, A. I., Machado, V. M., Almeida, M. E., & Guerreiro das Neves, M. (2016). Skin and proximity effects in the series-impedance of three-phase underground cables. Electric Power Systems Research, 130, 132-138. doi:10.1016/j.epsr.2015.08.027 | es_ES |
dc.description.references | Cardenas, D. E., & Ezekoye, O. A. (2015). Thermal Characterization of Electrical Wires and Insulation Operated in Variable Frequency Mode. Fire Technology, 51(5), 1071-1092. doi:10.1007/s10694-015-0474-1 | es_ES |
dc.description.references | Dumont de Chassart, C., Van Beneden, M., Kluyskens, V., & Dehez, B. (2016). Semi-analytical determination of inductances in windings with axial and azimuthal wires. COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, 35(1), 2-15. doi:10.1108/compel-12-2014-0340 | es_ES |
dc.description.references | Chiesa, N., & Gustavsen, B. (2014). Frequency-Dependent Modeling of Transformer Winding Impedance From <formula formulatype=«inline»><tex Notation=«TeX»>${\rm R}(\omega)/{\rm L}$</tex></formula> Measurements. IEEE Transactions on Power Delivery, 29(3), 1511-1513. doi:10.1109/tpwrd.2014.2301597 | es_ES |
dc.description.references | Chinesta, F., Ladeveze, P., & Cueto, E. (2011). A Short Review on Model Order Reduction Based on Proper Generalized Decomposition. Archives of Computational Methods in Engineering, 18(4), 395-404. doi:10.1007/s11831-011-9064-7 | es_ES |
dc.description.references | Chinesta, F., Leygue, A., Bordeu, F., Aguado, J. V., Cueto, E., Gonzalez, D., … Huerta, A. (2013). PGD-Based Computational Vademecum for Efficient Design, Optimization and Control. Archives of Computational Methods in Engineering, 20(1), 31-59. doi:10.1007/s11831-013-9080-x | es_ES |
dc.description.references | De Smedt, R. (2014). Partial self inductance at DC of some common cross sections. 2014 IEEE 18th Workshop on Signal and Power Integrity (SPI). doi:10.1109/sapiw.2014.6844550 | es_ES |
dc.description.references | Faiz, J., Ehya, H., Takbash, A. M., Shojaee, S., Hamidian, M., & Ghorbani, A. (2016). Recent progresses in bus-ducts design. COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, 35(1), 117-136. doi:10.1108/compel-02-2015-0099 | es_ES |
dc.description.references | Freitas, D., Guerreiro das Neves, M., Almeida, M. E., & Maló Machado, V. (2015). Evaluation of the longitudinal parameters of an overhead transmission line with non-homogeneous cross section. Electric Power Systems Research, 119, 478-484. doi:10.1016/j.epsr.2014.11.003 | es_ES |
dc.description.references | Giner, E., Bognet, B., Ródenas, J. J., Leygue, A., Fuenmayor, F. J., & Chinesta, F. (2013). The Proper Generalized Decomposition (PGD) as a numerical procedure to solve 3D cracked plates in linear elastic fracture mechanics. International Journal of Solids and Structures, 50(10), 1710-1720. doi:10.1016/j.ijsolstr.2013.01.039 | es_ES |
dc.description.references | Gohil, G., Bede, L., Teodorescu, R., Kerekes, T., & Blaabjerg, F. (2016). An Integrated Inductor for Parallel Interleaved Three-Phase Voltage Source Converters. IEEE Transactions on Power Electronics, 31(5), 3400-3414. doi:10.1109/tpel.2015.2459134 | es_ES |
dc.description.references | Holloway, C. L., & Kuester, E. F. (2009). DC Internal Inductance for a Conductor of Rectangular Cross Section. IEEE Transactions on Electromagnetic Compatibility, 51(2), 338-344. doi:10.1109/temc.2009.2016104 | es_ES |
dc.description.references | Holloway, C. L., Kuester, E. F., Ruehli, A. E., & Antonini, G. (2013). Partial and Internal Inductance: Two of Clayton R. Paul’s Many Passions. IEEE Transactions on Electromagnetic Compatibility, 55(4), 600-613. doi:10.1109/temc.2013.2253470 | es_ES |
dc.description.references | Martinez, J., Babic, S., & Akyel, C. (2014). On Evaluation of Inductance, DC Resistance, and Capacitance of Coaxial Inductors at Low Frequencies. IEEE Transactions on Magnetics, 50(7), 1-12. doi:10.1109/tmag.2014.2303943 | es_ES |
dc.description.references | Matsuki, M., & Matsushima, A. (2012). EFFICIENT IMPEDANCE COMPUTATION FOR MULTICONDUCTOR TRANSMISSION LINES OF RECTANGULAR CROSS SECTION. Progress In Electromagnetics Research B, 43, 373-391. doi:10.2528/pierb12071105 | es_ES |
dc.description.references | Moghaddami, M., Moghadasi, A., & Sarwat, A. I. (2016). An algorithm for fast calculation of short circuit forces in high current busbars of electric arc furnace transformers based on method of images. Electric Power Systems Research, 136, 173-180. doi:10.1016/j.epsr.2016.01.017 | es_ES |
dc.description.references | Morgan, V. T. (2013). The Current Distribution, Resistance and Internal Inductance of Linear Power System Conductors—A Review of Explicit Equations. IEEE Transactions on Power Delivery, 28(3), 1252-1262. doi:10.1109/tpwrd.2012.2213617 | es_ES |
dc.description.references | Peters, C., & Manoli, Y. (2008). Inductance calculation of planar multi-layer and multi-wire coils: An analytical approach. Sensors and Actuators A: Physical, 145-146, 394-404. doi:10.1016/j.sna.2007.11.003 | es_ES |
dc.description.references | Pineda‐Sanchez, M., Chinesta, F., Roger‐Folch, J., Riera‐Guasp, M., Pérez‐Cruz, J., & Daïm, F. (2010). Simulation of skin effect via separated representations. COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, 29(4), 919-929. doi:10.1108/03321641011044334 | es_ES |
dc.description.references | Rainey, J. K., DeVries, J. S., & Sykes, B. D. (2007). Estimation and measurement of flat or solenoidal coil inductance for radiofrequency NMR coil design. Journal of Magnetic Resonance, 187(1), 27-37. doi:10.1016/j.jmr.2007.03.016 | es_ES |
dc.description.references | Riba, J.-R. (2015). Analysis of formulas to calculate the AC resistance of different conductors’ configurations. Electric Power Systems Research, 127, 93-100. doi:10.1016/j.epsr.2015.05.023 | es_ES |
dc.description.references | Smith, G. S. (2014). A simple derivation for the skin effect in a round wire. European Journal of Physics, 35(2), 025002. doi:10.1088/0143-0807/35/2/025002 | es_ES |
dc.description.references | Tsiboukis, T. D., & Kriezis, E. E. (1983). Calculation of inductance of conductors with various shapes of cross-section by direct methods of the functional analysis. Il Nuovo Cimento B Series 11, 73(2), 177-188. doi:10.1007/bf02721787 | es_ES |