- -

Modelling and Control of Parallel-Connected Transformerless Inverters for Large Photovoltaic Farms

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Modelling and Control of Parallel-Connected Transformerless Inverters for Large Photovoltaic Farms

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Liberos-Mascarell, María Antonia es_ES
dc.contributor.author González-Medina, Raúl es_ES
dc.contributor.author Garcerá, Gabriel es_ES
dc.contributor.author Figueres Amorós, Emilio es_ES
dc.date.accessioned 2018-03-04T05:13:05Z
dc.date.available 2018-03-04T05:13:05Z
dc.date.issued 2017 es_ES
dc.identifier.uri http://hdl.handle.net/10251/98768
dc.description.abstract [EN] This paper presents a control structure for transformerless photovoltaic inverters connected in parallel to manage photovoltaic fields in the MW range. Large photovoltaic farms are usually divided into several photovoltaic fields, each one of them managed by a centralized high power inverter. The current tendency to build up centralized inverters in the MW range is the use of several transformerless inverters connected in parallel, a topology that provokes the appearance of significant zero-sequence circulating currents among inverters. To eliminate this inconvenience, this paper proposes a control structure that avoids the appearance of circulating currents by controlling the zero-sequence component of the inverters. A second contribution of the paper is the development of a model of n parallel-connected inverters. To validate the concept, the proposed control structure has been applied to a photovoltaic field of 2 MW managed by four 500 kW photovoltaic inverters connected in parallel. es_ES
dc.description.sponsorship This work is supported by the Spanish Ministry of Economy and Competitiveness (MINECO), the European Regional Development Fund (ERDF) under Grant ENE2015-64087-C2-2-R and the Spanish Ministry of Education (FPU15/01274). en_EN
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Energies es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Photovoltaic farms es_ES
dc.subject Parallel inverters es_ES
dc.subject Circulating current es_ES
dc.subject Modeling and control es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Modelling and Control of Parallel-Connected Transformerless Inverters for Large Photovoltaic Farms es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/en10081242 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MECD//FPU15%2F01274/ES/FPU15%2F01274/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//ENE2015-64087-C2-2-R/ES/GESTION DE POTENCIA EN BUSES DE CORRIENTE CONTINUA E INTERCONEXION CON BUSES DE ALTERNA EN MICRORREDES HIBRIDAS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.description.bibliographicCitation Liberos-Mascarell, MA.; González-Medina, R.; Garcerá, G.; Figueres Amorós, E. (2017). Modelling and Control of Parallel-Connected Transformerless Inverters for Large Photovoltaic Farms. Energies. 10(8):1-25. https://doi.org/10.3390/en10081242 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/en10081242 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 25 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.description.issue 8 es_ES
dc.identifier.eissn 1996-1073 es_ES
dc.relation.pasarela S\341942 es_ES
dc.contributor.funder Ministerio de Educación, Cultura y Deporte es_ES
dc.contributor.funder Ministerio de Economía, Industria y Competitividad es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.description.references Pazheri, F. R., Othman, M. F., & Malik, N. H. (2014). A review on global renewable electricity scenario. Renewable and Sustainable Energy Reviews, 31, 835-845. doi:10.1016/j.rser.2013.12.020 es_ES
dc.description.references Subudhi, B., & Pradhan, R. (2013). A Comparative Study on Maximum Power Point Tracking Techniques for Photovoltaic Power Systems. IEEE Transactions on Sustainable Energy, 4(1), 89-98. doi:10.1109/tste.2012.2202294 es_ES
dc.description.references Borrega, M., Marroyo, L., Gonzalez, R., Balda, J., & Agorreta, J. L. (2013). Modeling and Control of a Master–Slave PV Inverter With N-Paralleled Inverters and Three-Phase Three-Limb Inductors. IEEE Transactions on Power Electronics, 28(6), 2842-2855. doi:10.1109/tpel.2012.2220859 es_ES
dc.description.references Araujo, S. V., Zacharias, P., & Mallwitz, R. (2010). Highly Efficient Single-Phase Transformerless Inverters for Grid-Connected Photovoltaic Systems. IEEE Transactions on Industrial Electronics, 57(9), 3118-3128. doi:10.1109/tie.2009.2037654 es_ES
dc.description.references PowerGate Plus 500 kWhttp://www.satcon.com es_ES
dc.description.references Agorreta, J. L., Borrega, M., López, J., & Marroyo, L. (2011). Modeling and Control of <formula formulatype=«inline»> <tex Notation=«TeX»>$N$</tex> </formula>-Paralleled Grid-Connected Inverters With LCL Filter Coupled Due to Grid Impedance in PV Plants. IEEE Transactions on Power Electronics, 26(3), 770-785. doi:10.1109/tpel.2010.2095429 es_ES
dc.description.references Power Electronicshttp://www.power-electronics.com es_ES
dc.description.references PVS980—1818 to 2091 kVAhttp://new.abb.com es_ES
dc.description.references Infineon, Central Inverter Solutionshttps://www.infineon.com/cms/en/applications/solar-energy-systems/central-inverter-solutions/ es_ES
dc.description.references Xiao, H., Xie, S., Chen, Y., & Huang, R. (2011). An Optimized Transformerless Photovoltaic Grid-Connected Inverter. IEEE Transactions on Industrial Electronics, 58(5), 1887-1895. doi:10.1109/tie.2010.2054056 es_ES
dc.description.references Mazumder, S. K. (2003). A novel discrete control strategy for independent stabilization of parallel three-phase boost converters by combining space-vector modulation with variable-structure control. IEEE Transactions on Power Electronics, 18(4), 1070-1083. doi:10.1109/tpel.2003.813770 es_ES
dc.description.references Ching-Tsai Pan, & Yi-Hung Liao. (2008). Modeling and Control of Circulating Currents for Parallel Three-Phase Boost Rectifiers With Different Load Sharing. IEEE Transactions on Industrial Electronics, 55(7), 2776-2785. doi:10.1109/tie.2008.925647 es_ES
dc.description.references Ogasawara, S., Takagaki, J., Akagi, H., & Nabae, A. (1992). A novel control scheme of a parallel current-controlled PWM inverter. IEEE Transactions on Industry Applications, 28(5), 1023-1030. doi:10.1109/28.158825 es_ES
dc.description.references Figueres, E., Garcera, G., Sandia, J., Gonzalez-Espin, F., & Rubio, J. C. (2009). Sensitivity Study of the Dynamics of Three-Phase Photovoltaic Inverters With an LCL Grid Filter. IEEE Transactions on Industrial Electronics, 56(3), 706-717. doi:10.1109/tie.2008.2010175 es_ES
dc.description.references Mohd, A., Ortjohann, E., Hamsic, N., Sinsukthavorn, W., Lingemann, M., Schmelter, A., & Morton, D. (2010). Control strategy and space vector modulation for three-leg four-wire voltage source inverters under unbalanced load conditions. IET Power Electronics, 3(3), 323. doi:10.1049/iet-pel.2008.0281 es_ES
dc.description.references Albatran, S., Fu, Y., Albanna, A., Schrader, R., & Mazzola, M. (2013). Hybrid 2D-3D Space Vector Modulation Voltage Control Algorithm for Three Phase Inverters. IEEE Transactions on Sustainable Energy, 4(3), 734-744. doi:10.1109/tste.2013.2245689 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem