Mostrar el registro sencillo del ítem
dc.contributor.author | Hadiwardoyo, Seilendria Ardityarama | es_ES |
dc.contributor.author | Tomás Domínguez, Andrés Enrique | es_ES |
dc.contributor.author | Hernández-Orallo, Enrique | es_ES |
dc.contributor.author | Tavares de Araujo Cesariny Calafate, Carlos Miguel | es_ES |
dc.contributor.author | Cano, Juan-Carlos | es_ES |
dc.contributor.author | Manzoni, Pietro | es_ES |
dc.date.accessioned | 2018-03-05T05:07:31Z | |
dc.date.available | 2018-03-05T05:07:31Z | |
dc.date.issued | 2017 | es_ES |
dc.identifier.issn | 1574-017X | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/98784 | |
dc.description.abstract | [EN] Event warnings are critical in the context of ITS, being dependent on reliable and low-delay delivery ofmessages to nearby vehicles. One of the main challenges to address in this context is intersection management. Since buildings will severely hinder signals in the 5GHz band, it becomes necessary to transmit at the exact moment a vehicle is at the center of an intersection to maximize delivery chances. However, GPS inaccuracy, among other problems, complicates the achievement of this goal. In this paper we study this problem by first analyzing different intersection types, studying the vehicular communications performance in each type of intersection through real scenario experiments. Obtained results show that intersection-related communications depend on the distances to the intersection and line-of-sight (LOS) conditions. Also, depending on the physical characteristics of intersections, the presented blockages introduce different degrees of hampering to message delivery. Based on the modeling of the different intersection types, we then study the expected success ratio when notifying events at intersections. In general, we find that effective propagation of messages at intersections is possible, even in urban canyons and despite GPS errors, as long as rooftop antennas are used to compensate for poor communication conditions. | es_ES |
dc.description.sponsorship | This work was partially supported by the “Ministerio de Economía y Competividad, Programa Estatal de Investigación, Desarollo e Innovación Orientada a los Retos de la Sociedad, Proyectos I+D+I 2014,” Spain, under Grants TEC2014-52690-R and BES-2015-075988. | |
dc.language | Inglés | es_ES |
dc.publisher | Hindawi Limited | es_ES |
dc.relation.ispartof | Mobile Information Systems | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject.classification | LENGUAJES Y SISTEMAS INFORMATICOS | es_ES |
dc.subject.classification | ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES | es_ES |
dc.title | Empirical Study and Modeling of Vehicular Communications at Intersections in the 5 GHz Band | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1155/2017/2861827 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//TEC2014-52690-R/ES/INTEGRACION DEL SMARTPHONE Y EL VEHICULO PARA CONECTAR CONDUCTORES, SENSORES Y ENTORNO A TRAVES DE UNA ARQUITECTURA DE SERVICIOS FUNCIONALES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//BES-2015-075988/ES/BES-2015-075988/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors | es_ES |
dc.description.bibliographicCitation | Hadiwardoyo, SA.; Tomás Domínguez, AE.; Hernández-Orallo, E.; Tavares De Araujo Cesariny Calafate, CM.; Cano, J.; Manzoni, P. (2017). Empirical Study and Modeling of Vehicular Communications at Intersections in the 5 GHz Band. Mobile Information Systems. (2861827):1-15. https://doi.org/10.1155/2017/2861827 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1155/2017/2861827 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 15 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.issue | 2861827 | es_ES |
dc.relation.pasarela | S\330197 | es_ES |
dc.contributor.funder | Ministerio de Economía, Industria y Competitividad | es_ES |
dc.description.references | Xiong, Z., Sheng, H., Rong, W., & Cooper, D. E. (2012). Intelligent transportation systems for smart cities: a progress review. Science China Information Sciences, 55(12), 2908-2914. doi:10.1007/s11432-012-4725-1 | es_ES |
dc.description.references | Papadimitratos, P., La Fortelle, A., Evenssen, K., Brignolo, R., & Cosenza, S. (2009). Vehicular communication systems: Enabling technologies, applications, and future outlook on intelligent transportation. IEEE Communications Magazine, 47(11), 84-95. doi:10.1109/mcom.2009.5307471 | es_ES |
dc.description.references | Grant-Muller, S., & Usher, M. (2014). Intelligent Transport Systems: The propensity for environmental and economic benefits. Technological Forecasting and Social Change, 82, 149-166. doi:10.1016/j.techfore.2013.06.010 | es_ES |
dc.description.references | Ma, X., Chen, X., & Refai, H. H. (2009). Performance and Reliability of DSRC Vehicular Safety Communication: A Formal Analysis. EURASIP Journal on Wireless Communications and Networking, 2009(1). doi:10.1155/2009/969164 | es_ES |
dc.description.references | Martinez, F. J., Toh, C.-K., Cano, J.-C., Calafate, C. T., & Manzoni, P. (2010). A Street Broadcast Reduction Scheme (SBR) to Mitigate the Broadcast Storm Problem in VANETs. Wireless Personal Communications, 56(3), 559-572. doi:10.1007/s11277-010-9989-4 | es_ES |
dc.description.references | Sanguesa, J. A., Fogue, M., Garrido, P., Martinez, F. J., Cano, J.-C., & Calafate, C. T. (2016). A Survey and Comparative Study of Broadcast Warning Message Dissemination Schemes for VANETs. Mobile Information Systems, 2016, 1-18. doi:10.1155/2016/8714142 | es_ES |
dc.description.references | Sommer, C., Joerer, S., Segata, M., Tonguz, O. K., Cigno, R. L., & Dressler, F. (2015). How Shadowing Hurts Vehicular Communications and How Dynamic Beaconing Can Help. IEEE Transactions on Mobile Computing, 14(7), 1411-1421. doi:10.1109/tmc.2014.2362752 | es_ES |
dc.description.references | Lin, J.-C., Lin, C.-S., Liang, C.-N., & Chen, B.-C. (2012). Wireless communication performance based on IEEE 802.11p R2V field trials. IEEE Communications Magazine, 50(5), 184-191. doi:10.1109/mcom.2012.6194401 | es_ES |
dc.description.references | Gozalvez, J., Sepulcre, M., & Bauza, R. (2012). IEEE 802.11p vehicle to infrastructure communications in urban environments. IEEE Communications Magazine, 50(5), 176-183. doi:10.1109/mcom.2012.6194400 | es_ES |
dc.description.references | Tornell, S. M., Patra, S., Calafate, C. T., Cano, J.-C., & Manzoni, P. (2015). GRCBox: Extending Smartphone Connectivity in Vehicular Networks. International Journal of Distributed Sensor Networks, 11(3), 478064. doi:10.1155/2015/478064 | es_ES |
dc.description.references | Chou, L.-D., Yang, J.-Y., Hsieh, Y.-C., Chang, D.-C., & Tung, C.-F. (2011). Intersection-Based Routing Protocol for VANETs. Wireless Personal Communications, 60(1), 105-124. doi:10.1007/s11277-011-0257-z | es_ES |
dc.description.references | Saleet, H., Langar, R., Naik, K., Boutaba, R., Nayak, A., & Goel, N. (2011). Intersection-Based Geographical Routing Protocol for VANETs: A Proposal and Analysis. IEEE Transactions on Vehicular Technology, 60(9), 4560-4574. doi:10.1109/tvt.2011.2173510 | es_ES |
dc.description.references | Guan, X., Huang, Y., Cai, Z., & Ohtsuki, T. (2015). Intersection-based forwarding protocol for vehicular ad hoc networks. Telecommunication Systems, 62(1), 67-76. doi:10.1007/s11235-015-9983-y | es_ES |
dc.description.references | Karney, C. F. F. (2011). Transverse Mercator with an accuracy of a few nanometers. Journal of Geodesy, 85(8), 475-485. doi:10.1007/s00190-011-0445-3 | es_ES |
dc.description.references | Durgin, G., Rappaport, T. S., & Hao Xu. (1998). Measurements and models for radio path loss and penetration loss in and around homes and trees at 5.85 GHz. IEEE Transactions on Communications, 46(11), 1484-1496. doi:10.1109/26.729393 | es_ES |
dc.description.references | Haklay, M., & Weber, P. (2008). OpenStreetMap: User-Generated Street Maps. IEEE Pervasive Computing, 7(4), 12-18. doi:10.1109/mprv.2008.80 | es_ES |