- -

Empirical Study and Modeling of Vehicular Communications at Intersections in the 5 GHz Band

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Empirical Study and Modeling of Vehicular Communications at Intersections in the 5 GHz Band

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Hadiwardoyo, Seilendria Ardityarama es_ES
dc.contributor.author Tomás Domínguez, Andrés Enrique es_ES
dc.contributor.author Hernández-Orallo, Enrique es_ES
dc.contributor.author Tavares de Araujo Cesariny Calafate, Carlos Miguel es_ES
dc.contributor.author Cano, Juan-Carlos es_ES
dc.contributor.author Manzoni, Pietro es_ES
dc.date.accessioned 2018-03-05T05:07:31Z
dc.date.available 2018-03-05T05:07:31Z
dc.date.issued 2017 es_ES
dc.identifier.issn 1574-017X es_ES
dc.identifier.uri http://hdl.handle.net/10251/98784
dc.description.abstract [EN] Event warnings are critical in the context of ITS, being dependent on reliable and low-delay delivery ofmessages to nearby vehicles. One of the main challenges to address in this context is intersection management. Since buildings will severely hinder signals in the 5GHz band, it becomes necessary to transmit at the exact moment a vehicle is at the center of an intersection to maximize delivery chances. However, GPS inaccuracy, among other problems, complicates the achievement of this goal. In this paper we study this problem by first analyzing different intersection types, studying the vehicular communications performance in each type of intersection through real scenario experiments. Obtained results show that intersection-related communications depend on the distances to the intersection and line-of-sight (LOS) conditions. Also, depending on the physical characteristics of intersections, the presented blockages introduce different degrees of hampering to message delivery. Based on the modeling of the different intersection types, we then study the expected success ratio when notifying events at intersections. In general, we find that effective propagation of messages at intersections is possible, even in urban canyons and despite GPS errors, as long as rooftop antennas are used to compensate for poor communication conditions. es_ES
dc.description.sponsorship This work was partially supported by the “Ministerio de Economía y Competividad, Programa Estatal de Investigación, Desarollo e Innovación Orientada a los Retos de la Sociedad, Proyectos I+D+I 2014,” Spain, under Grants TEC2014-52690-R and BES-2015-075988.
dc.language Inglés es_ES
dc.publisher Hindawi Limited es_ES
dc.relation.ispartof Mobile Information Systems es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject.classification LENGUAJES Y SISTEMAS INFORMATICOS es_ES
dc.subject.classification ARQUITECTURA Y TECNOLOGIA DE COMPUTADORES es_ES
dc.title Empirical Study and Modeling of Vehicular Communications at Intersections in the 5 GHz Band es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1155/2017/2861827 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TEC2014-52690-R/ES/INTEGRACION DEL SMARTPHONE Y EL VEHICULO PARA CONECTAR CONDUCTORES, SENSORES Y ENTORNO A TRAVES DE UNA ARQUITECTURA DE SERVICIOS FUNCIONALES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BES-2015-075988/ES/BES-2015-075988/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors es_ES
dc.description.bibliographicCitation Hadiwardoyo, SA.; Tomás Domínguez, AE.; Hernández-Orallo, E.; Tavares De Araujo Cesariny Calafate, CM.; Cano, J.; Manzoni, P. (2017). Empirical Study and Modeling of Vehicular Communications at Intersections in the 5 GHz Band. Mobile Information Systems. (2861827):1-15. https://doi.org/10.1155/2017/2861827 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1155/2017/2861827 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 15 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.issue 2861827 es_ES
dc.relation.pasarela S\330197 es_ES
dc.contributor.funder Ministerio de Economía, Industria y Competitividad es_ES
dc.description.references Xiong, Z., Sheng, H., Rong, W., & Cooper, D. E. (2012). Intelligent transportation systems for smart cities: a progress review. Science China Information Sciences, 55(12), 2908-2914. doi:10.1007/s11432-012-4725-1 es_ES
dc.description.references Papadimitratos, P., La Fortelle, A., Evenssen, K., Brignolo, R., & Cosenza, S. (2009). Vehicular communication systems: Enabling technologies, applications, and future outlook on intelligent transportation. IEEE Communications Magazine, 47(11), 84-95. doi:10.1109/mcom.2009.5307471 es_ES
dc.description.references Grant-Muller, S., & Usher, M. (2014). Intelligent Transport Systems: The propensity for environmental and economic benefits. Technological Forecasting and Social Change, 82, 149-166. doi:10.1016/j.techfore.2013.06.010 es_ES
dc.description.references Ma, X., Chen, X., & Refai, H. H. (2009). Performance and Reliability of DSRC Vehicular Safety Communication: A Formal Analysis. EURASIP Journal on Wireless Communications and Networking, 2009(1). doi:10.1155/2009/969164 es_ES
dc.description.references Martinez, F. J., Toh, C.-K., Cano, J.-C., Calafate, C. T., & Manzoni, P. (2010). A Street Broadcast Reduction Scheme (SBR) to Mitigate the Broadcast Storm Problem in VANETs. Wireless Personal Communications, 56(3), 559-572. doi:10.1007/s11277-010-9989-4 es_ES
dc.description.references Sanguesa, J. A., Fogue, M., Garrido, P., Martinez, F. J., Cano, J.-C., & Calafate, C. T. (2016). A Survey and Comparative Study of Broadcast Warning Message Dissemination Schemes for VANETs. Mobile Information Systems, 2016, 1-18. doi:10.1155/2016/8714142 es_ES
dc.description.references Sommer, C., Joerer, S., Segata, M., Tonguz, O. K., Cigno, R. L., & Dressler, F. (2015). How Shadowing Hurts Vehicular Communications and How Dynamic Beaconing Can Help. IEEE Transactions on Mobile Computing, 14(7), 1411-1421. doi:10.1109/tmc.2014.2362752 es_ES
dc.description.references Lin, J.-C., Lin, C.-S., Liang, C.-N., & Chen, B.-C. (2012). Wireless communication performance based on IEEE 802.11p R2V field trials. IEEE Communications Magazine, 50(5), 184-191. doi:10.1109/mcom.2012.6194401 es_ES
dc.description.references Gozalvez, J., Sepulcre, M., & Bauza, R. (2012). IEEE 802.11p vehicle to infrastructure communications in urban environments. IEEE Communications Magazine, 50(5), 176-183. doi:10.1109/mcom.2012.6194400 es_ES
dc.description.references Tornell, S. M., Patra, S., Calafate, C. T., Cano, J.-C., & Manzoni, P. (2015). GRCBox: Extending Smartphone Connectivity in Vehicular Networks. International Journal of Distributed Sensor Networks, 11(3), 478064. doi:10.1155/2015/478064 es_ES
dc.description.references Chou, L.-D., Yang, J.-Y., Hsieh, Y.-C., Chang, D.-C., & Tung, C.-F. (2011). Intersection-Based Routing Protocol for VANETs. Wireless Personal Communications, 60(1), 105-124. doi:10.1007/s11277-011-0257-z es_ES
dc.description.references Saleet, H., Langar, R., Naik, K., Boutaba, R., Nayak, A., & Goel, N. (2011). Intersection-Based Geographical Routing Protocol for VANETs: A Proposal and Analysis. IEEE Transactions on Vehicular Technology, 60(9), 4560-4574. doi:10.1109/tvt.2011.2173510 es_ES
dc.description.references Guan, X., Huang, Y., Cai, Z., & Ohtsuki, T. (2015). Intersection-based forwarding protocol for vehicular ad hoc networks. Telecommunication Systems, 62(1), 67-76. doi:10.1007/s11235-015-9983-y es_ES
dc.description.references Karney, C. F. F. (2011). Transverse Mercator with an accuracy of a few nanometers. Journal of Geodesy, 85(8), 475-485. doi:10.1007/s00190-011-0445-3 es_ES
dc.description.references Durgin, G., Rappaport, T. S., & Hao Xu. (1998). Measurements and models for radio path loss and penetration loss in and around homes and trees at 5.85 GHz. IEEE Transactions on Communications, 46(11), 1484-1496. doi:10.1109/26.729393 es_ES
dc.description.references Haklay, M., & Weber, P. (2008). OpenStreetMap: User-Generated Street Maps. IEEE Pervasive Computing, 7(4), 12-18. doi:10.1109/mprv.2008.80 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem