- -

Development of the MOOSY4 eNose IoT for Sulphur-Based VOC Water Pollution Detection

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Development of the MOOSY4 eNose IoT for Sulphur-Based VOC Water Pollution Detection

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Climent-Martí, Enric es_ES
dc.contributor.author Pelegrí Sebastiá, José es_ES
dc.contributor.author Sogorb Devesa, Tomás es_ES
dc.contributor.author Talens-Felis, Juan-Bta es_ES
dc.contributor.author Chilo, José es_ES
dc.date.accessioned 2018-03-05T05:10:06Z
dc.date.available 2018-03-05T05:10:06Z
dc.date.issued 2017 es_ES
dc.identifier.uri http://hdl.handle.net/10251/98785
dc.description.abstract [EN] In this paper, we describe a new low-cost and portable electronic nose instrument, the Multisensory Odor Olfactory System MOOSY4. This prototype is based on only four metal oxide semiconductor (MOS) gas sensors suitable for IoT technology. The system architecture consists of four stages: data acquisition, data storage, data processing, and user interfacing. The designed eNose was tested with experiment for detection of volatile components in water pollution, as a dimethyl disulphide or dimethyl diselenide or sulphur. Therefore, the results provide evidence that odor information can be recognized with around 86% efficiency, detecting smells unwanted in the water and improving the quality control in bottled water factories. es_ES
dc.description.sponsorship This work was supported by the I+D+i Program of the Generalitat Valenciana, Spain [AICO/2016/046], and the II Program UPV-La Fe [2013/0504]. en_EN
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Sensors es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject ANN es_ES
dc.subject MOOSY4 es_ES
dc.subject WEKA es_ES
dc.subject Electronic nose es_ES
dc.subject Embedded es_ES
dc.subject Water quality es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Development of the MOOSY4 eNose IoT for Sulphur-Based VOC Water Pollution Detection es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/s17081917 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//AICO%2F2016%2F046/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Investigación para la Gestión Integral de Zonas Costeras - Institut d'Investigació per a la Gestió Integral de Zones Costaneres es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.description.bibliographicCitation Climent-Martí, E.; Pelegrí Sebastiá, J.; Sogorb Devesa, T.; Talens-Felis, J.; Chilo, J. (2017). Development of the MOOSY4 eNose IoT for Sulphur-Based VOC Water Pollution Detection. Sensors. 17(8):1-10. https://doi.org/10.3390/s17081917 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/s17081917 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 10 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 17 es_ES
dc.description.issue 8 es_ES
dc.identifier.eissn 1424-8220 es_ES
dc.identifier.pmid 28825645 en_EN
dc.identifier.pmcid PMC5580038 en_EN
dc.relation.pasarela S\342240 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.description.references Babovic, Z. B., Protic, J., & Milutinovic, V. (2016). Web Performance Evaluation for Internet of Things Applications. IEEE Access, 4, 6974-6992. doi:10.1109/access.2016.2615181 es_ES
dc.description.references Getting Startedhttps://docs.smartcitizen.me/#/start/detailed-specifications es_ES
dc.description.references Xu, L. D., He, W., & Li, S. (2014). Internet of Things in Industries: A Survey. IEEE Transactions on Industrial Informatics, 10(4), 2233-2243. doi:10.1109/tii.2014.2300753 es_ES
dc.description.references Huang, J., Meng, Y., Gong, X., Liu, Y., & Duan, Q. (2014). A Novel Deployment Scheme for Green Internet of Things. IEEE Internet of Things Journal, 1(2), 196-205. doi:10.1109/jiot.2014.2301819 es_ES
dc.description.references Gardner, J. W., & Bartlett, P. N. (1994). A brief history of electronic noses. Sensors and Actuators B: Chemical, 18(1-3), 210-211. doi:10.1016/0925-4005(94)87085-3 es_ES
dc.description.references Gardner, J. W., & Bartlett, P. N. (1996). Performance definition and standardization of electronic noses. Sensors and Actuators B: Chemical, 33(1-3), 60-67. doi:10.1016/0925-4005(96)01819-9 es_ES
dc.description.references Wilson, A., & Baietto, M. (2009). Applications and Advances in Electronic-Nose Technologies. Sensors, 9(7), 5099-5148. doi:10.3390/s90705099 es_ES
dc.description.references Jia, X.-M., Meng, Q.-H., Jing, Y.-Q., Qi, P.-F., Zeng, M., & Ma, S.-G. (2016). A New Method Combining KECA-LDA With ELM for Classification of Chinese Liquors Using Electronic Nose. IEEE Sensors Journal, 16(22), 8010-8017. doi:10.1109/jsen.2016.2606163 es_ES
dc.description.references Jing, Y.-Q., Meng, Q.-H., Qi, P.-F., Cao, M.-L., Zeng, M., & Ma, S.-G. (2016). A Bioinspired Neural Network for Data Processing in an Electronic Nose. IEEE Transactions on Instrumentation and Measurement, 65(10), 2369-2380. doi:10.1109/tim.2016.2578618 es_ES
dc.description.references Fine, G. F., Cavanagh, L. M., Afonja, A., & Binions, R. (2010). Metal Oxide Semi-Conductor Gas Sensors in Environmental Monitoring. Sensors, 10(6), 5469-5502. doi:10.3390/s100605469 es_ES
dc.description.references Santra, S., Guha, P. K., Ali, S. Z., Hiralal, P., Unalan, H. E., Covington, J. A., … Udrea, F. (2010). ZnO nanowires grown on SOI CMOS substrate for ethanol sensing. Sensors and Actuators B: Chemical, 146(2), 559-565. doi:10.1016/j.snb.2010.01.009 es_ES
dc.description.references Wilson, A. (2013). Diverse Applications of Electronic-Nose Technologies in Agriculture and Forestry. Sensors, 13(2), 2295-2348. doi:10.3390/s130202295 es_ES
dc.description.references Lorwongtragool, P., Sowade, E., Watthanawisuth, N., Baumann, R., & Kerdcharoen, T. (2014). A Novel Wearable Electronic Nose for Healthcare Based on Flexible Printed Chemical Sensor Array. Sensors, 14(10), 19700-19712. doi:10.3390/s141019700 es_ES
dc.description.references Son, M., Cho, D., Lim, J. H., Park, J., Hong, S., Ko, H. J., & Park, T. H. (2015). Real-time monitoring of geosmin and 2-methylisoborneol, representative odor compounds in water pollution using bioelectronic nose with human-like performance. Biosensors and Bioelectronics, 74, 199-206. doi:10.1016/j.bios.2015.06.053 es_ES
dc.description.references Gardner, J. W., Shin, H. W., Hines, E. L., & Dow, C. S. (2000). An electronic nose system for monitoring the quality of potable water. Sensors and Actuators B: Chemical, 69(3), 336-341. doi:10.1016/s0925-4005(00)00482-2 es_ES
dc.description.references Goschnick, J., Koronczi, I., Frietsch, M., & Kiselev, I. (2005). Water pollution recognition with the electronic nose KAMINA. Sensors and Actuators B: Chemical, 106(1), 182-186. doi:10.1016/j.snb.2004.05.055 es_ES
dc.description.references Guadayol, M., Cortina, M., Guadayol, J. M., & Caixach, J. (2016). Determination of dimethyl selenide and dimethyl sulphide compounds causing off-flavours in bottled mineral waters. Water Research, 92, 149-155. doi:10.1016/j.watres.2016.01.016 es_ES
dc.description.references Wilson, A. D. (2012). Review of Electronic-nose Technologies and Algorithms to Detect Hazardous Chemicals in the Environment. Procedia Technology, 1, 453-463. doi:10.1016/j.protcy.2012.02.101 es_ES
dc.description.references Becher, C., Kaul, P., Mitrovics, J., & Warmer, J. (2010). The detection of evaporating hazardous material released from moving sources using a gas sensor network. Sensors and Actuators B: Chemical, 146(2), 513-520. doi:10.1016/j.snb.2009.12.030 es_ES
dc.description.references Berrueta, L. A., Alonso-Salces, R. M., & Héberger, K. (2007). Supervised pattern recognition in food analysis. Journal of Chromatography A, 1158(1-2), 196-214. doi:10.1016/j.chroma.2007.05.024 es_ES
dc.description.references Lajara, R. J., Perez-Solano, J. J., & Pelegri-Sebastia, J. (2015). A Method for Modeling the Battery State of Charge in Wireless Sensor Networks. IEEE Sensors Journal, 15(2), 1186-1197. doi:10.1109/jsen.2014.2361151 es_ES
dc.description.references Batista, B. L., da Silva, L. R. S., Rocha, B. A., Rodrigues, J. L., Berretta-Silva, A. A., Bonates, T. O., … Barbosa, F. (2012). Multi-element determination in Brazilian honey samples by inductively coupled plasma mass spectrometry and estimation of geographic origin with data mining techniques. Food Research International, 49(1), 209-215. doi:10.1016/j.foodres.2012.07.015 es_ES
dc.description.references Benedetti, S., Mannino, S., Sabatini, A. G., & Marcazzan, G. L. (2004). Electronic nose and neural network use for the classification of honey. Apidologie, 35(4), 397-402. doi:10.1051/apido:2004025 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem