Mostrar el registro sencillo del ítem
dc.contributor.author | Climent-Martí, Enric | es_ES |
dc.contributor.author | Pelegrí Sebastiá, José | es_ES |
dc.contributor.author | Sogorb Devesa, Tomás | es_ES |
dc.contributor.author | Talens-Felis, Juan-Bta | es_ES |
dc.contributor.author | Chilo, José | es_ES |
dc.date.accessioned | 2018-03-05T05:10:06Z | |
dc.date.available | 2018-03-05T05:10:06Z | |
dc.date.issued | 2017 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/98785 | |
dc.description.abstract | [EN] In this paper, we describe a new low-cost and portable electronic nose instrument, the Multisensory Odor Olfactory System MOOSY4. This prototype is based on only four metal oxide semiconductor (MOS) gas sensors suitable for IoT technology. The system architecture consists of four stages: data acquisition, data storage, data processing, and user interfacing. The designed eNose was tested with experiment for detection of volatile components in water pollution, as a dimethyl disulphide or dimethyl diselenide or sulphur. Therefore, the results provide evidence that odor information can be recognized with around 86% efficiency, detecting smells unwanted in the water and improving the quality control in bottled water factories. | es_ES |
dc.description.sponsorship | This work was supported by the I+D+i Program of the Generalitat Valenciana, Spain [AICO/2016/046], and the II Program UPV-La Fe [2013/0504]. | en_EN |
dc.language | Inglés | es_ES |
dc.publisher | MDPI AG | es_ES |
dc.relation.ispartof | Sensors | es_ES |
dc.rights | Reconocimiento (by) | es_ES |
dc.subject | ANN | es_ES |
dc.subject | MOOSY4 | es_ES |
dc.subject | WEKA | es_ES |
dc.subject | Electronic nose | es_ES |
dc.subject | Embedded | es_ES |
dc.subject | Water quality | es_ES |
dc.subject.classification | TECNOLOGIA ELECTRONICA | es_ES |
dc.title | Development of the MOOSY4 eNose IoT for Sulphur-Based VOC Water Pollution Detection | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.3390/s17081917 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//AICO%2F2016%2F046/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto de Investigación para la Gestión Integral de Zonas Costeras - Institut d'Investigació per a la Gestió Integral de Zones Costaneres | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica | es_ES |
dc.description.bibliographicCitation | Climent-Martí, E.; Pelegrí Sebastiá, J.; Sogorb Devesa, T.; Talens-Felis, J.; Chilo, J. (2017). Development of the MOOSY4 eNose IoT for Sulphur-Based VOC Water Pollution Detection. Sensors. 17(8):1-10. https://doi.org/10.3390/s17081917 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.3390/s17081917 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 10 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 17 | es_ES |
dc.description.issue | 8 | es_ES |
dc.identifier.eissn | 1424-8220 | es_ES |
dc.identifier.pmid | 28825645 | en_EN |
dc.identifier.pmcid | PMC5580038 | en_EN |
dc.relation.pasarela | S\342240 | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.description.references | Babovic, Z. B., Protic, J., & Milutinovic, V. (2016). Web Performance Evaluation for Internet of Things Applications. IEEE Access, 4, 6974-6992. doi:10.1109/access.2016.2615181 | es_ES |
dc.description.references | Getting Startedhttps://docs.smartcitizen.me/#/start/detailed-specifications | es_ES |
dc.description.references | Xu, L. D., He, W., & Li, S. (2014). Internet of Things in Industries: A Survey. IEEE Transactions on Industrial Informatics, 10(4), 2233-2243. doi:10.1109/tii.2014.2300753 | es_ES |
dc.description.references | Huang, J., Meng, Y., Gong, X., Liu, Y., & Duan, Q. (2014). A Novel Deployment Scheme for Green Internet of Things. IEEE Internet of Things Journal, 1(2), 196-205. doi:10.1109/jiot.2014.2301819 | es_ES |
dc.description.references | Gardner, J. W., & Bartlett, P. N. (1994). A brief history of electronic noses. Sensors and Actuators B: Chemical, 18(1-3), 210-211. doi:10.1016/0925-4005(94)87085-3 | es_ES |
dc.description.references | Gardner, J. W., & Bartlett, P. N. (1996). Performance definition and standardization of electronic noses. Sensors and Actuators B: Chemical, 33(1-3), 60-67. doi:10.1016/0925-4005(96)01819-9 | es_ES |
dc.description.references | Wilson, A., & Baietto, M. (2009). Applications and Advances in Electronic-Nose Technologies. Sensors, 9(7), 5099-5148. doi:10.3390/s90705099 | es_ES |
dc.description.references | Jia, X.-M., Meng, Q.-H., Jing, Y.-Q., Qi, P.-F., Zeng, M., & Ma, S.-G. (2016). A New Method Combining KECA-LDA With ELM for Classification of Chinese Liquors Using Electronic Nose. IEEE Sensors Journal, 16(22), 8010-8017. doi:10.1109/jsen.2016.2606163 | es_ES |
dc.description.references | Jing, Y.-Q., Meng, Q.-H., Qi, P.-F., Cao, M.-L., Zeng, M., & Ma, S.-G. (2016). A Bioinspired Neural Network for Data Processing in an Electronic Nose. IEEE Transactions on Instrumentation and Measurement, 65(10), 2369-2380. doi:10.1109/tim.2016.2578618 | es_ES |
dc.description.references | Fine, G. F., Cavanagh, L. M., Afonja, A., & Binions, R. (2010). Metal Oxide Semi-Conductor Gas Sensors in Environmental Monitoring. Sensors, 10(6), 5469-5502. doi:10.3390/s100605469 | es_ES |
dc.description.references | Santra, S., Guha, P. K., Ali, S. Z., Hiralal, P., Unalan, H. E., Covington, J. A., … Udrea, F. (2010). ZnO nanowires grown on SOI CMOS substrate for ethanol sensing. Sensors and Actuators B: Chemical, 146(2), 559-565. doi:10.1016/j.snb.2010.01.009 | es_ES |
dc.description.references | Wilson, A. (2013). Diverse Applications of Electronic-Nose Technologies in Agriculture and Forestry. Sensors, 13(2), 2295-2348. doi:10.3390/s130202295 | es_ES |
dc.description.references | Lorwongtragool, P., Sowade, E., Watthanawisuth, N., Baumann, R., & Kerdcharoen, T. (2014). A Novel Wearable Electronic Nose for Healthcare Based on Flexible Printed Chemical Sensor Array. Sensors, 14(10), 19700-19712. doi:10.3390/s141019700 | es_ES |
dc.description.references | Son, M., Cho, D., Lim, J. H., Park, J., Hong, S., Ko, H. J., & Park, T. H. (2015). Real-time monitoring of geosmin and 2-methylisoborneol, representative odor compounds in water pollution using bioelectronic nose with human-like performance. Biosensors and Bioelectronics, 74, 199-206. doi:10.1016/j.bios.2015.06.053 | es_ES |
dc.description.references | Gardner, J. W., Shin, H. W., Hines, E. L., & Dow, C. S. (2000). An electronic nose system for monitoring the quality of potable water. Sensors and Actuators B: Chemical, 69(3), 336-341. doi:10.1016/s0925-4005(00)00482-2 | es_ES |
dc.description.references | Goschnick, J., Koronczi, I., Frietsch, M., & Kiselev, I. (2005). Water pollution recognition with the electronic nose KAMINA. Sensors and Actuators B: Chemical, 106(1), 182-186. doi:10.1016/j.snb.2004.05.055 | es_ES |
dc.description.references | Guadayol, M., Cortina, M., Guadayol, J. M., & Caixach, J. (2016). Determination of dimethyl selenide and dimethyl sulphide compounds causing off-flavours in bottled mineral waters. Water Research, 92, 149-155. doi:10.1016/j.watres.2016.01.016 | es_ES |
dc.description.references | Wilson, A. D. (2012). Review of Electronic-nose Technologies and Algorithms to Detect Hazardous Chemicals in the Environment. Procedia Technology, 1, 453-463. doi:10.1016/j.protcy.2012.02.101 | es_ES |
dc.description.references | Becher, C., Kaul, P., Mitrovics, J., & Warmer, J. (2010). The detection of evaporating hazardous material released from moving sources using a gas sensor network. Sensors and Actuators B: Chemical, 146(2), 513-520. doi:10.1016/j.snb.2009.12.030 | es_ES |
dc.description.references | Berrueta, L. A., Alonso-Salces, R. M., & Héberger, K. (2007). Supervised pattern recognition in food analysis. Journal of Chromatography A, 1158(1-2), 196-214. doi:10.1016/j.chroma.2007.05.024 | es_ES |
dc.description.references | Lajara, R. J., Perez-Solano, J. J., & Pelegri-Sebastia, J. (2015). A Method for Modeling the Battery State of Charge in Wireless Sensor Networks. IEEE Sensors Journal, 15(2), 1186-1197. doi:10.1109/jsen.2014.2361151 | es_ES |
dc.description.references | Batista, B. L., da Silva, L. R. S., Rocha, B. A., Rodrigues, J. L., Berretta-Silva, A. A., Bonates, T. O., … Barbosa, F. (2012). Multi-element determination in Brazilian honey samples by inductively coupled plasma mass spectrometry and estimation of geographic origin with data mining techniques. Food Research International, 49(1), 209-215. doi:10.1016/j.foodres.2012.07.015 | es_ES |
dc.description.references | Benedetti, S., Mannino, S., Sabatini, A. G., & Marcazzan, G. L. (2004). Electronic nose and neural network use for the classification of honey. Apidologie, 35(4), 397-402. doi:10.1051/apido:2004025 | es_ES |