- -

REDOX CELL HYDRODYNAMIC MODELLING: TOWARDS REAL IMPROVED GEOMETRY BASED ON CFD ANALYSIS

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

REDOX CELL HYDRODYNAMIC MODELLING: TOWARDS REAL IMPROVED GEOMETRY BASED ON CFD ANALYSIS

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Escudero González, Juan es_ES
dc.contributor.author López Jiménez, Petra Amparo es_ES
dc.date.accessioned 2018-03-08T05:21:10Z
dc.date.available 2018-03-08T05:21:10Z
dc.date.issued 2014 es_ES
dc.identifier.issn 1994-2060 es_ES
dc.identifier.uri http://hdl.handle.net/10251/98934
dc.description.abstract [EN] Redox cell is an assembly consisting of electrodes surrounded by a volume of electrolyte (liquid). The redox cell device stores electrical energy with full of high acid flows and this acidity causes big difficulties for physical modeling. To overcome this problem, numerical and experimental analysis of those flows in a real redox cell have been developed and here described. A methodology to improve redox cell performance based on the analysis of the electrolyte flow is proposed. Improvements in the flow uniformity are achieved by means of the definition of some designed parameters based on CFD analysis. The depicted methodology is applied to a specific redox cell geometry for improving authors¿ previous designs. This article quantifies parameters for this particular case and the proposed improvements. The considered CFD model is also validated with experimental data using a real scale cell built in transparent material. The convergence between experimental and numerical results is fairly good. Finally, the geometry designed based on this proposed methodology presents 0% dead zones or recirculations in the membrane area, which will definitely improve the overall interchange efficiency of the cell. This validated methodology is presented for a real future design strategy of these sorts of devices. es_ES
dc.language Inglés es_ES
dc.publisher Taylor & Francis es_ES
dc.relation.ispartof Engineering Applications of Computational Fluid Mechanics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject CFD es_ES
dc.subject Hydraulic experiment es_ES
dc.subject Electrolyte distribution es_ES
dc.subject Electrolytic reactor es_ES
dc.subject REDOX iron flow cell es_ES
dc.subject.classification INGENIERIA HIDRAULICA es_ES
dc.subject.classification MECANICA DE FLUIDOS es_ES
dc.title REDOX CELL HYDRODYNAMIC MODELLING: TOWARDS REAL IMPROVED GEOMETRY BASED ON CFD ANALYSIS es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1080/19942060.2014.11015527 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient es_ES
dc.description.bibliographicCitation Escudero Gonzalez, J.; López Jiménez, PA. (2014). REDOX CELL HYDRODYNAMIC MODELLING: TOWARDS REAL IMPROVED GEOMETRY BASED ON CFD ANALYSIS. Engineering Applications of Computational Fluid Mechanics. 8(3):435-446. doi:10.1080/19942060.2014.11015527 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1080/19942060.2014.11015527 es_ES
dc.description.upvformatpinicio 435 es_ES
dc.description.upvformatpfin 446 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 8 es_ES
dc.description.issue 3 es_ES
dc.relation.pasarela S\269514 es_ES
dc.description.references Bannari A, Cirtiu C, Kerdouss F, Proulx P, Menard H (2006). Turbulence intensity in an electrochemical cell: effect on reactor performance.Chemical Engineering and Processing: Process Intensification45:471–480. es_ES
dc.description.references Bard A, Faulkner L (2001).Electrochemical Methods. Wiley. es_ES
dc.description.references Castelain C, Mokrani A, Legentilhomme P, Peerhossaini H (1997). Residence time distribution in twisted pipe flows: helically coiled system and chaotic system.Experiments in Fluids22(5):359–368. es_ES
dc.description.references Cebeci T, Bradshaw P (1977).Momentum Transfer in Boundary Layers. McGraw-Hill. es_ES
dc.description.references Chen H, Ngoc-Cong T, Yang W, Tan C, Li Y, Ding Y; Chen, H; Ngoc-Cong, T (2009) Progress in electrical energy storage system: a critical review.Progress in Natural Science19(3):291–312. es_ES
dc.description.references CD-Adapco. (2013).User Guide STAR-CCM+. Version 8.06. © 2013 es_ES
dc.description.references Codina G (1992).Desarrollo de una Planta de Acumulación de Energía Eléctrica Basada en el Acumulador Redox Fe/Cr. Thesis. Universidad de Alicante, es_ES
dc.description.references Demirdzic I, Muzaferija S (1995). Numerical method for coupled Fluid Flow heat transfer and stress analysis using unstructured moving meshes with cells of arbitrary topology.Computer Methods in Applied Mechanics and Engineering125:232–255. es_ES
dc.description.references Escudero-González J, Alberola A, López-Jiménez P (2013). Redox cell hydrodynamic modelling, simulation and experimental validation.Engineering Applications of Computational Fluid Mechanics7(2):168–181. es_ES
dc.description.references Escudero-González, J., & López-Jiménez, P. A. (2014). Iron redox battery as electrical energy storage system in the Spanish energetic framework. International Journal of Electrical Power & Energy Systems, 61, 421-428. doi:10.1016/j.ijepes.2014.03.067 es_ES
dc.description.references Eyer, James M, Corey, Garth P, Iannucci, Joseph J (2004). Sponsoring Organization: USDOE 2004. es_ES
dc.description.references Frias-Ferrer A (2004).Optimización de la Hidrodinámica de Reactores Electroquímicos:Empleo de Métodos Experimentales y Numéricos. Thesis. Universidad de Alicante. es_ES
dc.description.references Jörissen L, Frey H (2009). ENERGY | Energy storage.Encyclopedia of Electrochemical Power Sources215–231. es_ES
dc.description.references Kondoh J, Ishii I, Yamaguchi H, Murata A, Otani K, Sakuta K, Higuchi N, Sekine S, Kamimoto M (2010). Electrical energy storage systems for energy networks.Energy Conversion and Management41:1863–1874. es_ES
dc.description.references Mellentine J (2011).Performance Characterization and Cost Assessment of an Iron Hybrid Flow Battery. Thesis. University of Iceland. es_ES
dc.description.references Moore S, David (2003).The Basic Practice of Statistics, 3rd Edition. New York: W,H, Freeman and Company. es_ES
dc.description.references Navidi W (2006).Estadística Para Ingenieros y Científicos, 1st Edition. New York: McGraw-Hill Companies Inc. es_ES
dc.description.references Parker C (2009). APPLICATIONS – STATIONARY | Energy storage systems: batteries.Encyclopedia of Electrochemical Power Sources53–64. es_ES
dc.description.references Rahman F, Rehman S, Abdul-Majeed M (2012). Overview of energy storage systems for storing electricity from renewable energy sources in Saudi Arabia.Renewable and Sustainable Energy Reviews16:274–283. es_ES
dc.description.references Reddy T (2002).Linden’s Handbook of Batteries, 3rd Edition. McGraw-Hill Professional, es_ES
dc.description.references Scamman D, Reade G, Roberts E (2009). Numerical modelling of a bromide–polysulphide redox flow battery: part 1: modelling approach and validation for a pilot-scale.Jounal of Power Sources189:1220–1230. es_ES
dc.description.references Shih TH, Liou WW, Shabbir A, Yang Z, Zhu J (1994). A new k-ɛ eddy viscosity model for hight Reynolds number turbulent flows - model developmente and validation.NASA TM106721. es_ES
dc.description.references Shukla A, Venugopalan S, Hariprakash B (2001). Nickel-based rechargeable batteries.Jounal Power Sources100:122–148. es_ES
dc.description.references Vazquez S, Lukic SM, Galvan E, Franquelo LG, Carrasco JM (2010). Energy storage systems for transport and grid applications.IEEE Transactions on Industrial Electronics57(12):3881–3895. es_ES
dc.description.references Walawalkar R, Apt J (2008).Market Analysis of Emerging Electric Energy Storage System. DOE/NETL-2008/1330. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem