- -

Computational modeling of internally cooled wet (ICW) electrodes for radiofrequency ablation: Impact of rehydration, thermal convection and electrical conductivity

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Computational modeling of internally cooled wet (ICW) electrodes for radiofrequency ablation: Impact of rehydration, thermal convection and electrical conductivity

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Trujillo Guillen, Macarena es_ES
dc.contributor.author Bon Corbín, José es_ES
dc.contributor.author Berjano, Enrique es_ES
dc.date.accessioned 2018-03-09T05:18:01Z
dc.date.available 2018-03-09T05:18:01Z
dc.date.issued 2017 es_ES
dc.identifier.issn 0265-6736 es_ES
dc.identifier.uri http://hdl.handle.net/10251/99051
dc.description.abstract [EN] Purpose: (1) To analyse rehydration, thermal convection and increased electrical conductivity as the three phenomena which distinguish the performance of internally cooled electrodes (IC) and internally cooled wet (ICW) electrodes during radiofrequency ablation (RFA), (2) Implement a RFA computer model with an ICW which includes these phenomena and (3) Assess their relative influence on the thermal and electrical tissue response and on the coagulation zone size. Methods: A 12-min RFA in liver was modelled using an ICW electrode (17G, 3cm tip) by an impedance-control pulsing protocol with a constant current of 1.5A. A model of an IC electrode was used to compare the ICW electrode performance and the computational results with the experimental results. Results: Rehydration and increased electrical conductivity were responsible for an increase in coagulation zone size and a delay (or absence) in the occurrence of abrupt increases in electrical impedance (roll-off). While the increased electrical conductivity had a remarkable effect on enlarging the coagulation zone (an increase of 0.74cm for differences in electrical conductivity of 0.31S/m), rehydration considerably affected the delay in roll-off, which, in fact, was absent with a sufficiently high rehydration level. In contrast, thermal convection had an insignificant effect for the flow rates considered (0.05 and 1mL/min). Conclusions: Computer results suggest that rehydration and increased electrical conductivity were mainly responsible for the absence of roll-off and increased size of the coagulation zone, respectively, and in combination allow the thermal and electrical performance of ICW electrodes to be modelled during RFA. es_ES
dc.description.sponsorship This work was supported by the Government of Spain through the Spanish Plan Estatal de Investigacion, Desarrollo e Innovacion Orientada a los Retos de la Sociedad under grant number TEC2014-52383-C3-R (TEC2014-52383-C3-1-R). en_EN
dc.language Inglés es_ES
dc.publisher Taylor & Francis es_ES
dc.relation.ispartof International Journal of Hyperthermia es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Computer modelling es_ES
dc.subject Internally cooled electrode es_ES
dc.subject Radiofrequency ablation es_ES
dc.subject Electrical conductivity es_ES
dc.subject Rehydration es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.subject.classification TECNOLOGIA DE ALIMENTOS es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.title Computational modeling of internally cooled wet (ICW) electrodes for radiofrequency ablation: Impact of rehydration, thermal convection and electrical conductivity es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1080/02656736.2017.1303751 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//TEC2014-52383-C3-1-R/ES/TECNOLOGIAS BASADAS EN ENERGIA DE RADIOFRECUENCIA Y MICROONDAS PARA CIRUGIA DE MINIMA INVASION/ es_ES
dc.rights.accessRights Abierto es_ES
dc.date.embargoEndDate 2018-03-21 es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.description.bibliographicCitation Trujillo Guillen, M.; Bon Corbín, J.; Berjano, E. (2017). Computational modeling of internally cooled wet (ICW) electrodes for radiofrequency ablation: Impact of rehydration, thermal convection and electrical conductivity. International Journal of Hyperthermia. 33(6):624-634. doi:10.1080/02656736.2017.1303751 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1080/02656736.2017.1303751 es_ES
dc.description.upvformatpinicio 624 es_ES
dc.description.upvformatpfin 634 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 33 es_ES
dc.description.issue 6 es_ES
dc.relation.pasarela S\329986 es_ES
dc.contributor.funder Ministerio de Economía, Industria y Competitividad es_ES
dc.description.references Kohlhase, K. D., Korkusuz, Y., Gröner, D., Erbelding, C., Happel, C., Luboldt, W., & Grünwald, F. (2016). Bipolar radiofrequency ablation of benign thyroid nodules using a multiple overlapping shot technique in a 3-month follow-up. International Journal of Hyperthermia, 32(5), 511-516. doi:10.3109/02656736.2016.1149234 es_ES
dc.description.references Zhang, F., Wu, G., Sun, H., Ding, J., Xia, F., Li, X., … Bie, P. (2014). Radiofrequency ablation of hepatocellular carcinoma in elderly patients fitting the Milan criteria: A single centre with 13 years experience. International Journal of Hyperthermia, 30(7), 471-479. doi:10.3109/02656736.2014.961042 es_ES
dc.description.references Trujillo, M., Alba, J., & Berjano, E. (2012). Relationship between roll-off occurrence and spatial distribution of dehydrated tissue during RF ablation with cooled electrodes. International Journal of Hyperthermia, 28(1), 62-68. doi:10.3109/02656736.2011.631076 es_ES
dc.description.references McGahan, J. P., & Dodd, G. D. (2001). Radiofrequency Ablation of the Liver. American Journal of Roentgenology, 176(1), 3-16. doi:10.2214/ajr.176.1.1760003 es_ES
dc.description.references Burdío, F., Tobajas, P., Quesada-Diez, R., Berjano, E., Navarro, A., Poves, I., & Grande, L. (2011). Distant Infusion of Saline May Enlarge Coagulation Volume During Radiofrequency Ablation of Liver Tissue Using Cool-tip Electrodes Without Impairing Predictability. American Journal of Roentgenology, 196(6), W837-W843. doi:10.2214/ajr.10.5202 es_ES
dc.description.references Burdío, F., Güemes, A., Burdío, J. M., Navarro, A., Sousa, R., Castiella, T., … Lozano, R. (2003). Bipolar Saline-enhanced Electrode for Radiofrequency Ablation: Results of Experimental Study of in Vivo Porcine Liver. Radiology, 229(2), 447-456. doi:10.1148/radiol.2292020978 es_ES
dc.description.references Lee, J. M., Han, J. K., Kim, S. H., Sohn, K. L., Lee, K. H., Ah, S. K., & Choi, B. I. (2003). A Comparative Experimental Study of the In-vitro Efficiency of Hypertonic Saline-Enhanced Hepatic Bipolar and Monopolar Radiofrequency Ablation. Korean Journal of Radiology, 4(3), 163. doi:10.3348/kjr.2003.4.3.163 es_ES
dc.description.references Goldberg, S. N., Ahmed, M., Gazelle, G. S., Kruskal, J. B., Huertas, J. C., Halpern, E. F., … Lenkinski, R. E. (2001). Radio-Frequency Thermal Ablation with NaCl Solution Injection: Effect of Electrical Conductivity on Tissue Heating and Coagulation—Phantom and Porcine Liver Study. Radiology, 219(1), 157-165. doi:10.1148/radiology.219.1.r01ap27157 es_ES
dc.description.references Lobo, S. M., Afzal, K. S., Ahmed, M., Kruskal, J. B., Lenkinski, R. E., & Goldberg, S. N. (2004). Radiofrequency Ablation: Modeling the Enhanced Temperature Response to Adjuvant NaCl Pretreatment. Radiology, 230(1), 175-182. doi:10.1148/radiol.2301021512 es_ES
dc.description.references Mulier, S., Miao, Y., Mulier, P., Dupas, B., Pereira, P., de Baere, T., … Ni, Y. (2005). Electrodes and multiple electrode systems for radiofrequency ablation: a proposal for updated terminology. European Radiology, 15(4), 798-808. doi:10.1007/s00330-004-2584-x es_ES
dc.description.references Hyoung Kim, J., Nyun Kim, P., Jin Won, H., & Moon Shin, Y. (2013). Percutaneous Radiofrequency Ablation with Internally Cooled versus Internally Cooled Wet Electrodes for Small Subphrenic Hepatocellular Carcinomas. Journal of Vascular and Interventional Radiology, 24(3), 351-356. doi:10.1016/j.jvir.2012.11.025 es_ES
dc.description.references Cha, J., Choi, D., Lee, M. W., Rhim, H., Kim, Y., Lim, H. K., … Park, C. K. (2009). Radiofrequency Ablation Zones in Ex Vivo Bovine and In Vivo Porcine Livers: Comparison of the Use of Internally Cooled Electrodes and Internally Cooled Wet Electrodes. CardioVascular and Interventional Radiology, 32(6), 1235-1240. doi:10.1007/s00270-009-9600-0 es_ES
dc.description.references Lee, J. M., Han, J. K., Chang, J. M., Chung, S. Y., Kim, S. H., Lee, J. Y., … Choi, B. I. (2006). Radiofrequency Ablation of the Porcine Liver In Vivo: Increased Coagulation with an Internally Cooled Perfusion Electrode. Academic Radiology, 13(3), 343-352. doi:10.1016/j.acra.2005.10.020 es_ES
dc.description.references Park, M.-H., Cho, J.-S., Shin, B. S., Jeon, G. S., Lee, B., & Lee, K. (2012). Comparison of Internally Cooled Wet Electrode and Hepatic Vascular Inflow Occlusion Method for Hepatic Radiofrequency Ablation. Gut and Liver, 6(4), 471-475. doi:10.5009/gnl.2012.6.4.471 es_ES
dc.description.references Han, J. K., Lee, J. M., Kim, S. H., Lee, J. Y., Park, H. S., Eo, H., & Choi, B. I. (2005). Radiofrequency ablation in the liver using two cooled-wet electrodes in the bipolar mode. European Radiology, 15(10), 2163-2170. doi:10.1007/s00330-005-2713-1 es_ES
dc.description.references Romero-Méndez, R., Tobajas, P., Burdío, F., Gonzalez, A., Navarro, A., Grande, L., & Berjano, E. (2012). Electrical-thermal performance of a cooled RF applicator for hepatic ablation with additional distant infusion of hypertonic saline:In vivostudy and preliminary computer modeling. International Journal of Hyperthermia, 28(7), 653-662. doi:10.3109/02656736.2012.711894 es_ES
dc.description.references Kim, J. H., Kim, P. N., Won, H. J., & Shin, Y. M. (2012). Percutaneous Radiofrequency Ablation Using Internally Cooled Wet Electrodes for the Treatment of Hepatocellular Carcinoma. American Journal of Roentgenology, 198(2), 471-476. doi:10.2214/ajr.11.6583 es_ES
dc.description.references Kim, J. W., Kim, J. H., Shin, Y. M., Won, H. J., & Kim, P. N. (2014). Percutaneous radiofrequency ablation with internally cooled wet electrodes versus cluster electrodes for the treatment of single medium-sized hepatocellular carcinoma. Gastrointestinal Intervention, 3(2), 98-103. doi:10.1016/j.gii.2014.09.008 es_ES
dc.description.references Jo, B., & Aksan, A. (2010). Prediction of the extent of thermal damage in the cornea during conductive keratoplasty. Journal of Thermal Biology, 35(4), 167-174. doi:10.1016/j.jtherbio.2010.02.004 es_ES
dc.description.references Haemmerich, D., Chachati, L., Wright, A. S., Mahvi, D. M., Lee, F. T., & Webster, J. G. (2003). Hepatic radiofrequency ablation with internally cooled probes: effect of coolant temperature on lesion size. IEEE Transactions on Biomedical Engineering, 50(4), 493-500. doi:10.1109/tbme.2003.809488 es_ES
dc.description.references Demazumder, D., Mirotznik, M. S., & Schwartzman, D. (2001). Journal of Interventional Cardiac Electrophysiology, 5(4), 377-389. doi:10.1023/a:1013224110550 es_ES
dc.description.references Antunes, C. L., Almeida, T. R. O., & Raposeiro, N. (2012). Saline‐enhanced RF ablation on a cholangiocarcinoma: a numerical simulation. COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, 31(4), 1055-1066. doi:10.1108/03321641211227302 es_ES
dc.description.references Pätz T, Kröger T, Preusser T. (2009). Simulation of radiofrequency ablation including water evaporation. IFMBE Proceedings, 25/IV:1287–90. es_ES
dc.description.references Berjano, E. J., Burdío, F., Navarro, A. C., Burdío, J. M., Güemes, A., Aldana, O., … Gregorio, M. A. de. (2006). Improved perfusion system for bipolar radiofrequency ablation of liver: preliminary findings from a computer modeling study. Physiological Measurement, 27(10), N55-N66. doi:10.1088/0967-3334/27/10/n03 es_ES
dc.description.references McGahan, J. P., Loh, S., Boschini, F. J., Paoli, E. E., Brock, J. M., Monsky, W. L., & Li, C.-S. (2010). Maximizing Parameters for Tissue Ablation by Using an Internally Cooled Electrode. Radiology, 256(2), 397-405. doi:10.1148/radiol.09090662 es_ES
dc.description.references Doss, J. D. (1982). Calculation of electric fields in conductive media. Medical Physics, 9(4), 566-573. doi:10.1118/1.595107 es_ES
dc.description.references Tungjitkusolmun, S., Woo, E. J., Cao, H., Tsai, J. Z., Vorperian, V. R., & Webster, J. G. (2000). Thermal—electrical finite element modelling for radio frequency cardiac ablation: Effects of changes in myocardial properties. Medical & Biological Engineering & Computing, 38(5), 562-568. doi:10.1007/bf02345754 es_ES
dc.description.references Hall, S. K., Ooi, E. H., & Payne, S. J. (2015). Cell death, perfusion and electrical parameters are critical in models of hepatic radiofrequency ablation. International Journal of Hyperthermia, 31(5), 538-550. doi:10.3109/02656736.2015.1032370 es_ES
dc.description.references Beop-Min Kim, Jacques, S. L., Rastegar, S., Thomsen, S., & Motamedi, M. (1996). Nonlinear finite-element analysis of the role of dynamic changes in blood perfusion and optical properties in laser coagulation of tissue. IEEE Journal of Selected Topics in Quantum Electronics, 2(4), 922-933. doi:10.1109/2944.577317 es_ES
dc.description.references Goldberg, S. N., Stein, M. C., Gazelle, G. S., Sheiman, R. G., Kruskal, J. B., & Clouse, M. E. (1999). Percutaneous Radiofrequency Tissue Ablation: Optimization of Pulsed-Radiofrequency Technique to Increase Coagulation Necrosis. Journal of Vascular and Interventional Radiology, 10(7), 907-916. doi:10.1016/s1051-0443(99)70136-3 es_ES
dc.description.references Trujillo, M., & Berjano, E. (2013). Review of the mathematical functions used to model the temperature dependence of electrical and thermal conductivities of biological tissue in radiofrequency ablation. International Journal of Hyperthermia, 29(6), 590-597. doi:10.3109/02656736.2013.807438 es_ES
dc.description.references Abraham, J. P., & Sparrow, E. M. (2007). A thermal-ablation bioheat model including liquid-to-vapor phase change, pressure- and necrosis-dependent perfusion, and moisture-dependent properties. International Journal of Heat and Mass Transfer, 50(13-14), 2537-2544. doi:10.1016/j.ijheatmasstransfer.2006.11.045 es_ES
dc.description.references Yang, D., Converse, M. C., Mahvi, D. M., & Webster, J. G. (2007). Expanding the Bioheat Equation to Include Tissue Internal Water Evaporation During Heating. IEEE Transactions on Biomedical Engineering, 54(8), 1382-1388. doi:10.1109/tbme.2007.890740 es_ES
dc.description.references Baxter, L. T., & Jain, R. K. (1989). Transport of fluid and macromolecules in tumors. I. Role of interstitial pressure and convection. Microvascular Research, 37(1), 77-104. doi:10.1016/0026-2862(89)90074-5 es_ES
dc.description.references Burdío, F., Berjano, E., Millan, O., Grande, L., Poves, I., Silva, C., … Mojal, S. (2013). CT mapping of saline distribution after infusion of saline into the liver in an ex vivo animal model. How much tissue is actually infused in an image-guided procedure? Physica Medica, 29(2), 188-195. doi:10.1016/j.ejmp.2012.03.001 es_ES
dc.description.references Uthamanthil, R. K., Edwards, R. B., Lu, Y., Manley, P. A., Athanasiou, K. A., & Markel, M. D. (2006). In vivo study on the short-term effect of radiofrequency energy on chondromalacic patellar cartilage and its correlation with calcified cartilage pathology in an equine model. Journal of Orthopaedic Research, 24(4), 716-724. doi:10.1002/jor.20108 es_ES
dc.description.references Nour SG, Lewin JS, Duerk JL. (2001). Saline injection in ex-vivo liver: monitoring with fast gradient echo sequences At 0.2 T, Glasgow, Scotland. Proceedings of the International Society for Magnetic Resonance in Medicine (ISMRM) 9th Scientific Meeting. es_ES
dc.description.references Schutt, D. J., & Haemmerich, D. (2008). Effects of variation in perfusion rates and of perfusion models in computational models of radio frequency tumor ablation. Medical Physics, 35(8), 3462-3470. doi:10.1118/1.2948388 es_ES
dc.description.references Myong-Ki Jun KD. (2006). Electrode for radiofrequency tissue ablation. US Patent US 2006/0122593, June 8, 2006. es_ES
dc.description.references Lee, J. M., Han, J. K., Kim, S. H., Han, C. J., An, S. K., Lee, J. Y., & Choi, B. I. (2005). Wet radio-frequency ablation using multiple electrodes: comparative study of bipolar versus monopolar modes in the bovine liver. European Journal of Radiology, 54(3), 408-417. doi:10.1016/j.ejrad.2004.06.004 es_ES
dc.description.references Lee, J. M., Han, J. K., Kim, S. H., Lee, J. Y., Kim, D. J., Lee, M. W., … Choi, B. I. (2004). Saline-Enhanced Hepatic Radiofrequency Ablation Using a Perfused-Cooled Electrode: Comparison of Dual Probe Bipolar Mode with Monopolar and Single Probe Bipolar Modes. Korean Journal of Radiology, 5(2), 121. doi:10.3348/kjr.2004.5.2.121 es_ES
dc.description.references Ishikawa, T. (2013). Radiofrequency ablation during continuous saline infusion can extend ablation margins. World Journal of Gastroenterology, 19(8), 1278. doi:10.3748/wjg.v19.i8.1278 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem