- -

Regulation of the Yeast Hxt6 Hexose Transporter by the Rod1 α-Arrestin, the Snf1 Protein Kinase, and the Bmh2 14-3-3 Protein

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Regulation of the Yeast Hxt6 Hexose Transporter by the Rod1 α-Arrestin, the Snf1 Protein Kinase, and the Bmh2 14-3-3 Protein

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Llopis Torregrosa, Vicent es_ES
dc.contributor.author Ferri-Blazquez, Alba es_ES
dc.contributor.author Adam-Artigues, Anna es_ES
dc.contributor.author Deffontaines, Emilie es_ES
dc.contributor.author van Heusden, G. Paul H. es_ES
dc.contributor.author Yenush, Lynne es_ES
dc.date.accessioned 2018-03-11T05:07:37Z
dc.date.available 2018-03-11T05:07:37Z
dc.date.issued 2016 es_ES
dc.identifier.issn 0021-9258 es_ES
dc.identifier.uri http://hdl.handle.net/10251/99146
dc.description.abstract [EN] Cell viability requires adaptation to changing environmental conditions. Ubiquitin-mediated endocytosis plays a crucial role in this process, because it provides a mechanism to remove transport proteins from the membrane. Arrestin-related trafficking proteins are important regulators of the endocytic pathway in yeast, facilitating selective ubiquitylation of target proteins by the E3 ubiquitin ligase, Rsp5. Specifically, Rod1 (Art4) has been reported to regulate the endocytosis of both the Hxt1, Hxt3, and Hxt6 glucose transporters and the Jen1 lactate transporter. Also, the AMP kinase homologue, Snf1, and 14-3-3 proteins have been shown to regulate Jen1 via Rod1. Here, we further characterized the role of Rod1, Snf1, and 14-3-3 in the signal transduction route involved in the endocytic regulation of the Hxt6 high affinity glucose transporter by showing that Snf1 interacts specifically with Rod1 and Rog3 (Art7), that the interaction between the Bmh2 and several arrestin-related trafficking proteins may be modulated by carbon source, and that both the 14-3-3 protein Bmh2 and the Snf1 regulatory domain interact with the arrestin-like domain containing the N-terminal half of Rod1 (amino acids 1-395). Finally, using both co-immunoprecipitation and bimolecular fluorescence complementation, we demonstrated the interaction of Rod1 with Hxt6 and showed that the localization of the Rod1-Hxt6 complex at the plasma membrane is affected by carbon source and is reduced upon overexpression of SNF1 and BMH2. es_ES
dc.description.sponsorship Supported by a predoctoral fellowship from the Polytechnic University of Valencia. en_EN
dc.language Inglés es_ES
dc.publisher American Society for Biochemistry and Molecular Biology es_ES
dc.relation.ispartof Journal of Biological Chemistry es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject 14-3-3 protein es_ES
dc.subject AMP-activated kinase (AMPK) es_ES
dc.subject Arrestin es_ES
dc.subject Membrane transport es_ES
dc.subject Trafficking
dc.title Regulation of the Yeast Hxt6 Hexose Transporter by the Rod1 α-Arrestin, the Snf1 Protein Kinase, and the Bmh2 14-3-3 Protein
dc.type Artículo
dc.identifier.doi 10.1074/jbc.M116.733923 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//BFU2011-30197-C03-03/ES/PAPEL DEL TRAFICO DE PROTEINAS EN LA HOMEOSTASIS DE IONES Y NUTRIENTES EN LEVADURA Y PLANTAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/J4NWO//2300160955/NL/
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia es_ES
dc.description.bibliographicCitation Llopis Torregrosa, V.; Ferri-Blazquez, A.; Adam-Artigues, A.; Deffontaines, E.; Van Heusden, GPH.; Yenush, L. (2016). Regulation of the Yeast Hxt6 Hexose Transporter by the Rod1 α-Arrestin, the Snf1 Protein Kinase, and the Bmh2 14-3-3 Protein. Journal of Biological Chemistry. 291(29):14973-14985. https://doi.org/10.1074/jbc.M116.733923 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1074/jbc.M116.733923 es_ES
dc.description.upvformatpinicio 14973 es_ES
dc.description.upvformatpfin 14985 es_ES
dc.description.volume 291 es_ES
dc.description.issue 29 es_ES
dc.relation.pasarela S\320610 es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Mulet, J. M., Llopis-Torregrosa, V., Primo, C., Marqués, M. C., & Yenush, L. (2013). Endocytic regulation of alkali metal transport proteins in mammals, yeast and plants. Current Genetics, 59(4), 207-230. doi:10.1007/s00294-013-0401-2 es_ES
dc.description.references Hein, C., Springael, J.-Y., Volland, C., Haguenauer-Tsapis, R., & Andre, B. (1995). NPI1, an essential yeast gene involved in induced degradation of Gap1 and Fur4 permeases, encodes the Rsp5 ubiquitin-protein ligase. Molecular Microbiology, 18(1), 77-87. doi:10.1111/j.1365-2958.1995.mmi_18010077.x es_ES
dc.description.references Babst, M., Katzmann, D. J., Estepa-Sabal, E. J., Meerloo, T., & Emr, S. D. (2002). Escrt-III. Developmental Cell, 3(2), 271-282. doi:10.1016/s1534-5807(02)00220-4 es_ES
dc.description.references Babst, M., Katzmann, D. J., Snyder, W. B., Wendland, B., & Emr, S. D. (2002). Endosome-Associated Complex, ESCRT-II, Recruits Transport Machinery for Protein Sorting at the Multivesicular Body. Developmental Cell, 3(2), 283-289. doi:10.1016/s1534-5807(02)00219-8 es_ES
dc.description.references Katzmann, D. J., Babst, M., & Emr, S. D. (2001). Ubiquitin-Dependent Sorting into the Multivesicular Body Pathway Requires the Function of a Conserved Endosomal Protein Sorting Complex, ESCRT-I. Cell, 106(2), 145-155. doi:10.1016/s0092-8674(01)00434-2 es_ES
dc.description.references Lauwers, E., Erpapazoglou, Z., Haguenauer-Tsapis, R., & André, B. (2010). The ubiquitin code of yeast permease trafficking. Trends in Cell Biology, 20(4), 196-204. doi:10.1016/j.tcb.2010.01.004 es_ES
dc.description.references Lin, C. H., MacGurn, J. A., Chu, T., Stefan, C. J., & Emr, S. D. (2008). Arrestin-Related Ubiquitin-Ligase Adaptors Regulate Endocytosis and Protein Turnover at the Cell Surface. Cell, 135(4), 714-725. doi:10.1016/j.cell.2008.09.025 es_ES
dc.description.references Aubry, L., & Klein, G. (2013). True Arrestins and Arrestin-Fold Proteins. The Molecular Biology of Arrestins, 21-56. doi:10.1016/b978-0-12-394440-5.00002-4 es_ES
dc.description.references Hatakeyama, R., Kamiya, M., Takahara, T., & Maeda, T. (2010). Endocytosis of the Aspartic Acid/Glutamic Acid Transporter Dip5 Is Triggered by Substrate-Dependent Recruitment of the Rsp5 Ubiquitin Ligase via the Arrestin-Like Protein Aly2. Molecular and Cellular Biology, 30(24), 5598-5607. doi:10.1128/mcb.00464-10 es_ES
dc.description.references Nikko, E., Sullivan, J. A., & Pelham, H. R. B. (2008). Arrestin-like proteins mediate ubiquitination and endocytosis of the yeast metal transporter Smf1. EMBO reports, 9(12), 1216-1221. doi:10.1038/embor.2008.199 es_ES
dc.description.references Nikko, E., & Pelham, H. R. B. (2009). Arrestin-Mediated Endocytosis of Yeast Plasma Membrane Transporters. Traffic, 10(12), 1856-1867. doi:10.1111/j.1600-0854.2009.00990.x es_ES
dc.description.references MacGurn, J. A., Hsu, P.-C., Smolka, M. B., & Emr, S. D. (2011). TORC1 Regulates Endocytosis via Npr1-Mediated Phosphoinhibition of a Ubiquitin Ligase Adaptor. Cell, 147(5), 1104-1117. doi:10.1016/j.cell.2011.09.054 es_ES
dc.description.references Merhi, A., & Andre, B. (2012). Internal Amino Acids Promote Gap1 Permease Ubiquitylation via TORC1/Npr1/14-3-3-Dependent Control of the Bul Arrestin-Like Adaptors. Molecular and Cellular Biology, 32(22), 4510-4522. doi:10.1128/mcb.00463-12 es_ES
dc.description.references O’Donnell, A. F., Huang, L., Thorner, J., & Cyert, M. S. (2013). A Calcineurin-dependent Switch Controls the Trafficking Function of α-Arrestin Aly1/Art6. Journal of Biological Chemistry, 288(33), 24063-24080. doi:10.1074/jbc.m113.478511 es_ES
dc.description.references O’Donnell, A. F., McCartney, R. R., Chandrashekarappa, D. G., Zhang, B. B., Thorner, J., & Schmidt, M. C. (2014). 2-Deoxyglucose Impairs Saccharomyces cerevisiae Growth by Stimulating Snf1-Regulated and α-Arrestin-Mediated Trafficking of Hexose Transporters 1 and 3. Molecular and Cellular Biology, 35(6), 939-955. doi:10.1128/mcb.01183-14 es_ES
dc.description.references Becuwe, M., Vieira, N., Lara, D., Gomes-Rezende, J., Soares-Cunha, C., Casal, M., … Léon, S. (2012). A molecular switch on an arrestin-like protein relays glucose signaling to transporter endocytosis. The Journal of Cell Biology, 196(2), 247-259. doi:10.1083/jcb.201109113 es_ES
dc.description.references Alvaro, C. G., Aindow, A., & Thorner, J. (2016). Differential Phosphorylation Provides a Switch to Control How α-Arrestin Rod1 Down-regulates Mating Pheromone Response inSaccharomyces cerevisiae. Genetics, 203(1), 299-317. doi:10.1534/genetics.115.186122 es_ES
dc.description.references Alvaro, C. G., O’Donnell, A. F., Prosser, D. C., Augustine, A. A., Goldman, A., Brodsky, J. L., … Thorner, J. (2014). Specific  -Arrestins Negatively Regulate Saccharomyces cerevisiae Pheromone Response by Down-Modulating the G-Protein-Coupled Receptor Ste2. Molecular and Cellular Biology, 34(14), 2660-2681. doi:10.1128/mcb.00230-14 es_ES
dc.description.references Shinoda, J., & Kikuchi, Y. (2007). Rod1, an arrestin-related protein, is phosphorylated by Snf1-kinase in Saccharomyces cerevisiae. Biochemical and Biophysical Research Communications, 364(2), 258-263. doi:10.1016/j.bbrc.2007.09.134 es_ES
dc.description.references Ichimura, T., Yamamura, H., Sasamoto, K., Tominaga, Y., Taoka, M., Kakiuchi, K., … Isobe, T. (2005). 14-3-3 Proteins Modulate the Expression of Epithelial Na+Channels by Phosphorylation-dependent Interaction with Nedd4-2 Ubiquitin Ligase. Journal of Biological Chemistry, 280(13), 13187-13194. doi:10.1074/jbc.m412884200 es_ES
dc.description.references Bhalla, V., Daidié, D., Li, H., Pao, A. C., LaGrange, L. P., Wang, J., … Pearce, D. (2005). Serum- and Glucocorticoid-Regulated Kinase 1 Regulates Ubiquitin Ligase Neural Precursor Cell-Expressed, Developmentally Down-Regulated Protein 4-2 by Inducing Interaction with 14-3-3. Molecular Endocrinology, 19(12), 3073-3084. doi:10.1210/me.2005-0193 es_ES
dc.description.references Jiang, R., & Carlson, M. (1996). Glucose regulates protein interactions within the yeast SNF1 protein kinase complex. Genes & Development, 10(24), 3105-3115. doi:10.1101/gad.10.24.3105 es_ES
dc.description.references Proszynski, T. J., Klemm, R. W., Gravert, M., Hsu, P. P., Gloor, Y., Wagner, J., … Walch-Solimena, C. (2005). A genome-wide visual screen reveals a role for sphingolipids and ergosterol in cell surface delivery in yeast. Proceedings of the National Academy of Sciences, 102(50), 17981-17986. doi:10.1073/pnas.0509107102 es_ES
dc.description.references MacGurn, J. A., Hsu, P.-C., & Emr, S. D. (2012). Ubiquitin and Membrane Protein Turnover: From Cradle to Grave. Annual Review of Biochemistry, 81(1), 231-259. doi:10.1146/annurev-biochem-060210-093619 es_ES
dc.description.references Becuwe, M. , and Léon, S. (2014) Integrated control of transporter endocytosis and recycling by the arrestin-related protein Rod1 and the ubiquitin ligase Rsp5. Elife 3, 03307 es_ES
dc.description.references Alvarez, C. E. (2008). On the origins of arrestin and rhodopsin. BMC Evolutionary Biology, 8(1), 222. doi:10.1186/1471-2148-8-222 es_ES
dc.description.references Chutkow, W. A., Patwari, P., Yoshioka, J., & Lee, R. T. (2007). Thioredoxin-interacting Protein (Txnip) Is a Critical Regulator of Hepatic Glucose Production. Journal of Biological Chemistry, 283(4), 2397-2406. doi:10.1074/jbc.m708169200 es_ES
dc.description.references Sheth, S. S., Castellani, L. W., Chari, S., Wagg, C., Thipphavong, C. K., Bodnar, J. S., … Lusis, A. J. (2004). Thioredoxin-interacting protein deficiency disrupts the fasting-feeding metabolic transition. Journal of Lipid Research, 46(1), 123-134. doi:10.1194/jlr.m400341-jlr200 es_ES
dc.description.references Bodnar, J. S., Chatterjee, A., Castellani, L. W., Ross, D. A., Ohmen, J., Cavalcoli, J., … Lusis, A. J. (2001). Positional cloning of the combined hyperlipidemia gene Hyplip1. Nature Genetics, 30(1), 110-116. doi:10.1038/ng811 es_ES
dc.description.references Parikh, H., Carlsson, E., Chutkow, W. A., Johansson, L. E., Storgaard, H., Poulsen, P., … Mootha, V. K. (2007). TXNIP Regulates Peripheral Glucose Metabolism in Humans. PLoS Medicine, 4(5), e158. doi:10.1371/journal.pmed.0040158 es_ES
dc.description.references Yoshioka, J., Imahashi, K., Gabel, S. A., Chutkow, W. A., Burds, A. A., Gannon, J., … Lee, R. T. (2007). Targeted Deletion of Thioredoxin-Interacting Protein Regulates Cardiac Dysfunction in Response to Pressure Overload. Circulation Research, 101(12), 1328-1338. doi:10.1161/circresaha.106.160515 es_ES
dc.description.references Andres, A. M., Ratliff, E. P., Sachithanantham, S., & Hui, S. T. (2011). Diminished AMPK signaling response to fasting in thioredoxin-interacting protein knockout mice. FEBS Letters, 585(8), 1223-1230. doi:10.1016/j.febslet.2011.03.042 es_ES
dc.description.references Wu, N., Zheng, B., Shaywitz, A., Dagon, Y., Tower, C., Bellinger, G., … Cantley, L. C. (2013). AMPK-Dependent Degradation of TXNIP upon Energy Stress Leads to Enhanced Glucose Uptake via GLUT1. Molecular Cell, 49(6), 1167-1175. doi:10.1016/j.molcel.2013.01.035 es_ES
dc.description.references Patwari, P., Chutkow, W. A., Cummings, K., Verstraeten, V. L. R. M., Lammerding, J., Schreiter, E. R., & Lee, R. T. (2009). Thioredoxin-independent Regulation of Metabolism by the α-Arrestin Proteins. Journal of Biological Chemistry, 284(37), 24996-25003. doi:10.1074/jbc.m109.018093 es_ES
dc.description.references Paumi, C. M., Menendez, J., Arnoldo, A., Engels, K., Iyer, K. R., Thaminy, S., … Stagljar, I. (2007). Mapping Protein-Protein Interactions for the Yeast ABC Transporter Ycf1p by Integrated Split-Ubiquitin Membrane Yeast Two-Hybrid Analysis. Molecular Cell, 26(1), 15-25. doi:10.1016/j.molcel.2007.03.011 es_ES
dc.description.references Zonneveld, B. J. M. (1986). Cheap and simple yeast media. Journal of Microbiological Methods, 4(5-6), 287-291. doi:10.1016/0167-7012(86)90040-0 es_ES
dc.description.references Mayordomo, I., Regelmann, J., Horak, J., & Sanz, P. (2003). Saccharomyces cerevisiae 14-3-3 proteins Bmh1 and Bmh2 participate in the process of catabolite inactivation of maltose permease. FEBS Letters, 544(1-3), 160-164. doi:10.1016/s0014-5793(03)00498-8 es_ES
dc.description.references Zahrádka, J., van Heusden, G. P. H., & Sychrová, H. (2012). Yeast 14-3-3 proteins participate in the regulation of cell cation homeostasis via interaction with Nha1 alkali-metal-cation/proton antiporter. Biochimica et Biophysica Acta (BBA) - General Subjects, 1820(7), 849-858. doi:10.1016/j.bbagen.2012.03.013 es_ES
dc.description.references Sung, M.-K., & Huh, W.-K. (2007). Bimolecular fluorescence complementation analysis system forin vivo detection of protein–protein interaction inSaccharomyces cerevisiae. Yeast, 24(9), 767-775. doi:10.1002/yea.1504 es_ES
dc.description.references Longtine, M. S., Mckenzie III, A., Demarini, D. J., Shah, N. G., Wach, A., Brachat, A., … Pringle, J. R. (1998). Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast, 14(10), 953-961. doi:10.1002/(sici)1097-0061(199807)14:10<953::aid-yea293>3.0.co;2-u es_ES
dc.description.references Burd, C. G., & Emr, S. D. (1998). Phosphatidylinositol(3)-Phosphate Signaling Mediated by Specific Binding to RING FYVE Domains. Molecular Cell, 2(1), 157-162. doi:10.1016/s1097-2765(00)80125-2 es_ES
dc.description.references Yenush, L., Merchan, S., Holmes, J., & Serrano, R. (2005). pH-Responsive, Posttranslational Regulation of the Trk1 Potassium Transporter by the Type 1-Related Ppz1 Phosphatase. Molecular and Cellular Biology, 25(19), 8683-8692. doi:10.1128/mcb.25.19.8683-8692.2005 es_ES
dc.description.references Gaxiola, R., de Larrinoa, I. F., Villalba, J. M., & Serrano, R. (1992). A novel and conserved salt-induced protein is an important determinant of salt tolerance in yeast. The EMBO Journal, 11(9), 3157-3164. doi:10.1002/j.1460-2075.1992.tb05392.x es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem