- -

Diastereoselective Synthesis of Pyranoquinolines on Zirconium-Containing UiO-66 Metal-Organic Frameworks

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Diastereoselective Synthesis of Pyranoquinolines on Zirconium-Containing UiO-66 Metal-Organic Frameworks

Show simple item record

Files in this item

dc.contributor.author López-Rechac, Víctor es_ES
dc.contributor.author García Cirujano, Francisco es_ES
dc.contributor.author Corma Canós, Avelino es_ES
dc.contributor.author Llabrés i Xamena, Francesc Xavier es_ES
dc.date.accessioned 2018-03-13T05:13:46Z
dc.date.available 2018-03-13T05:13:46Z
dc.date.issued 2016 es_ES
dc.identifier.issn 1434-1948 es_ES
dc.identifier.uri http://hdl.handle.net/10251/99227
dc.description.abstract [EN] The Zr terephthalate MOFs UiO-66 and UiO-66-NH2 have been found to be highly diastereoselective catalysts for the synthesis of a pyrano[3,2-c]quinoline through an inverse electron -demand aza-Diels-Alder [4+2] cycloaddition of an aryl Qmine (formed in situ from aniline and benzaldehyde) and 3,4-dihydro-2H-pyran in one pot, affording the corresponding trans isomer in diastereomeric excesses of 90-95 %. The solids are stable under the reaction conditions and can be reused at least three times without significant loss of activity or diastereoselectivity. es_ES
dc.description.sponsorship Financial support from the Generalitat Valenciana (projects Consolider-Ingenio MULTICAT and AICO/2015/065), the Spanish Ministry of Economy and Competitiveness (MINECO) (program Severn Ochoa SEV20120267), and the Spanish Ministry of Science and Innovation (MICINN) (project MAT2014-52085-C2-1-P) is gratefully acknowledged. V. L. R. thanks the Fundacion "La Caixa" for a "La Caixa-Severo Ochoa" Ph. D. Scholarship. This project received funding from the European Union's Horizon 2020 Tesearch and Innovation Programme under the Marie Skolodowska Curie grant agreement number 641887. en_EN
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof European Journal of Inorganic Chemistry es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Metal-organic frameworks es_ES
dc.subject Heterogeneous catalysis es_ES
dc.subject Zirconium es_ES
dc.subject Diastereoselectivity es_ES
dc.subject Cycloaddition es_ES
dc.subject Nitrogen heterocycles es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Diastereoselective Synthesis of Pyranoquinolines on Zirconium-Containing UiO-66 Metal-Organic Frameworks es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/ejic.201600372 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/641887/EU/DEFect NETwork materials science and engineering/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2014-52085-C2-1-P/ES/NUEVOS MATERIALES CON DIFERENTES CENTROS ACTIVOS INCORPORADOS EN POSICIONES ESPECIFICAS DE LA RED Y SU APLICACION PARA PROCESOS CATALITICOS MULTI-ETAPA Y NANOTECNOLOGICOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SEV-2012-0267/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//AICO%2F2015%2F065/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation López-Rechac, V.; García Cirujano, F.; Corma Canós, A.; Llabrés I Xamena, FX. (2016). Diastereoselective Synthesis of Pyranoquinolines on Zirconium-Containing UiO-66 Metal-Organic Frameworks. European Journal of Inorganic Chemistry. 27:4512-4516. https://doi.org/10.1002/ejic.201600372 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/ejic.201600372 es_ES
dc.description.upvformatpinicio 4512 es_ES
dc.description.upvformatpfin 4516 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 27 es_ES
dc.relation.pasarela S\324336 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Educación, Cultura y Deporte es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder European Research Council es_ES
dc.contributor.funder European Commission
dc.description.references Li, B., Wang, H., & Chen, B. (2014). Microporous Metal-Organic Frameworks for Gas Separation. Chemistry - An Asian Journal, 9(6), 1474-1498. doi:10.1002/asia.201400031 es_ES
dc.description.references Li, J.-R., Sculley, J., & Zhou, H.-C. (2011). Metal–Organic Frameworks for Separations. Chemical Reviews, 112(2), 869-932. doi:10.1021/cr200190s es_ES
dc.description.references Rodenas, T., Luz, I., Prieto, G., Seoane, B., Miro, H., Corma, A., … Gascon, J. (2014). Metal–organic framework nanosheets in polymer composite materials for gas separation. Nature Materials, 14(1), 48-55. doi:10.1038/nmat4113 es_ES
dc.description.references Corma, A., García, H., & Llabrés i Xamena, F. X. (2010). Engineering Metal Organic Frameworks for Heterogeneous Catalysis. Chemical Reviews, 110(8), 4606-4655. doi:10.1021/cr9003924 es_ES
dc.description.references Farrusseng, D., Aguado, S., & Pinel, C. (2009). Metal-Organic Frameworks: Opportunities for Catalysis. Angewandte Chemie International Edition, 48(41), 7502-7513. doi:10.1002/anie.200806063 es_ES
dc.description.references Farrusseng, D., Aguado, S., & Pinel, C. (2009). Metall-organische Gerüste für die Katalyse. Angewandte Chemie, 121(41), 7638-7649. doi:10.1002/ange.200806063 es_ES
dc.description.references Llabres i Xamena, F., & Gascon, J. (Eds.). (2013). Metal Organic Frameworks as Heterogeneous Catalysts. Catalysis Series. doi:10.1039/9781849737586 es_ES
dc.description.references Gascon, J., Corma, A., Kapteijn, F., & Llabrés i Xamena, F. X. (2013). Metal Organic Framework Catalysis: Quo vadis? ACS Catalysis, 4(2), 361-378. doi:10.1021/cs400959k es_ES
dc.description.references Yamada, N., Kadowaki, S., Takahashi, K., & Umezu, K. (1992). MY-1250, a major metabolite of the anti-allergic drug repirinast, induces phosphorylation of a 78-kDa protein in rat mast cells. Biochemical Pharmacology, 44(6), 1211-1213. doi:10.1016/0006-2952(92)90387-x es_ES
dc.description.references Faber, K., StÚckler, H., & Kappe, T. (1984). Non-steroidal antiinflammatory agents.1. Synthesis of 4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl alkanoic acids by the wittig reaction of quinisatines. Journal of Heterocyclic Chemistry, 21(4), 1177-1181. doi:10.1002/jhet.5570210450 es_ES
dc.description.references Weirich, J., & Antoni, H. (1990). Differential Analysis of the Frequency-Dependent Effects of Class 1 Antiarrhythmic Drugs According to Periodical Ligand Binding. Journal of Cardiovascular Pharmacology, 15(6), 998-1009. doi:10.1097/00005344-199006000-00019 es_ES
dc.description.references Jacquemond-Collet, I., Benoit-Vical, F., Valentin, A., Stanislas, E., Mallié, M., & Fourasté, I. (2002). Antiplasmodial and Cytotoxic Activity of Galipinine and other Tetrahydroquinolines from Galipea officinalis. Planta Medica, 68(1), 68-69. doi:10.1055/s-2002-19869 es_ES
dc.description.references Wallace, O. B., Lauwers, K. S., Jones, S. A., & Dodge, J. A. (2003). Tetrahydroquinoline-Based selective estrogen receptor modulators (SERMs). Bioorganic & Medicinal Chemistry Letters, 13(11), 1907-1910. doi:10.1016/s0960-894x(03)00306-8 es_ES
dc.description.references Dorey, G., Lockhart, B., Lestage, P., & Casara, P. (2000). New quinolinic derivatives as centrally active antioxidants. Bioorganic & Medicinal Chemistry Letters, 10(9), 935-939. doi:10.1016/s0960-894x(00)00122-0 es_ES
dc.description.references Preface. (1996). Zeolites, 17(1-2), 1-2. doi:10.1016/s0144-2449(96)80002-9 es_ES
dc.description.references Ramesh, M., Mohan, P. S., & Shanmugam, P. (1984). A convenient synthesis of flindersine, atanine and their analogues. Tetrahedron, 40(20), 4041-4049. doi:10.1016/0040-4020(84)85084-x es_ES
dc.description.references Cirujano, F. G., Leyva-Pérez, A., Corma, A., & Llabrés i Xamena, F. X. (2013). MOFs as Multifunctional Catalysts: Synthesis of Secondary Arylamines, Quinolines, Pyrroles, and Arylpyrrolidines over Bifunctional MIL-101. ChemCatChem, 5(2), 538-549. doi:10.1002/cctc.201200878 es_ES
dc.description.references Povarov, L. S. (1967). αβ-UNSATURATED ETHERS AND THEIR ANALOGUES IN REACTIONS OF DIENE SYNTHESIS. Russian Chemical Reviews, 36(9), 656-670. doi:10.1070/rc1967v036n09abeh001680 es_ES
dc.description.references Nagarapu, L., Bantu, R., & Puligoundla, R. G. (2011). Tin(II)chloride catalyzed synthesis of pyranoquinolines, phenanthridinone and phenanthridine derivatives. European Journal of Chemistry, 2(2), 260-265. doi:10.5155/eurjchem.2.2.260-265.263 es_ES
dc.description.references Mahajan, D., Ganai, B. A., Sharma, R. L., & Kapoor, K. K. (2006). Antimony chloride doped on hydroxyapetite catalyzed stereoselective one-pot synthesis of pyrano[3,2-c]quinolines. Tetrahedron Letters, 47(45), 7919-7921. doi:10.1016/j.tetlet.2006.09.007 es_ES
dc.description.references Abdollahi-Alibeik, M., & Pouriayevali, M. (2011). 12-Tungstophosphoric acid supported on nano sized MCM-41 as an efficient and reusable solid acid catalyst for the three-component imino Diels–Alder reaction. Reaction Kinetics, Mechanisms and Catalysis, 104(1), 235-248. doi:10.1007/s11144-011-0345-9 es_ES
dc.description.references Kamble, V. T., Davane, B. S., Chavan, S. A., Muley, D. B., & Atkore, S. T. (2010). Imino Diels–Alder reactions: One-pot synthesis of tetrahydroquinolines. Chinese Chemical Letters, 21(3), 265-268. doi:10.1016/j.cclet.2009.11.016 es_ES
dc.description.references Yu, Y., Zhou, J., Yao, Z., Xu, F., & Shen, Q. (2010). Stereoselective synthesis of pyrano[3,2-c]- and furano[3,2-c]quinolines: Gadolinium chloride catalyzed one-pot aza-Diels-Alder reactions. Heteroatom Chemistry, 21(5), 351-354. doi:10.1002/hc.20612 es_ES
dc.description.references Khan, A. T., Das, D. K., & Khan, M. M. (2011). Ferric sulfate [Fe2(SO4)3·xH2O]: an efficient heterogeneous catalyst for the synthesis of tetrahydroquinoline derivatives using Povarov reaction. Tetrahedron Letters, 52(35), 4539-4542. doi:10.1016/j.tetlet.2011.06.080 es_ES
dc.description.references Jeong, K. S., Go, Y. B., Shin, S. M., Lee, S. J., Kim, J., Yaghi, O. M., & Jeong, N. (2011). Asymmetric catalytic reactions by NbO-type chiral metal–organic frameworks. Chemical Science, 2(5), 877. doi:10.1039/c0sc00582g es_ES
dc.description.references Vermoortele, F., Ameloot, R., Alaerts, L., Matthessen, R., Carlier, B., Fernandez, E. V. R., … De Vos, D. E. (2012). Tuning the catalytic performance of metal–organic frameworks in fine chemistry by active site engineering. Journal of Materials Chemistry, 22(20), 10313. doi:10.1039/c2jm16030g es_ES
dc.description.references Gole, B., Bar, A. K., Mallick, A., Banerjee, R., & Mukherjee, P. S. (2013). An electron rich porous extended framework as a heterogeneous catalyst for Diels–Alder reactions. Chemical Communications, 49(67), 7439. doi:10.1039/c3cc43681k es_ES
dc.description.references Grigoropoulos, A., Whitehead, G. F. S., Perret, N., Katsoulidis, A. P., Chadwick, F. M., Davies, R. P., … Rosseinsky, M. J. (2016). Encapsulation of an organometallic cationic catalyst by direct exchange into an anionic MOF. Chemical Science, 7(3), 2037-2050. doi:10.1039/c5sc03494a es_ES
dc.description.references Liu, Y., Mo, K., & Cui, Y. (2013). Porous and Robust Lanthanide Metal-Organoboron Frameworks as Water Tolerant Lewis Acid Catalysts. Inorganic Chemistry, 52(18), 10286-10291. doi:10.1021/ic400598x es_ES
dc.description.references Feng, D., Gu, Z.-Y., Chen, Y.-P., Park, J., Wei, Z., Sun, Y., … Zhou, H.-C. (2014). A Highly Stable Porphyrinic Zirconium Metal–Organic Framework with shp-a Topology. Journal of the American Chemical Society, 136(51), 17714-17717. doi:10.1021/ja510525s es_ES
dc.description.references Cavka, J. H., Jakobsen, S., Olsbye, U., Guillou, N., Lamberti, C., Bordiga, S., & Lillerud, K. P. (2008). A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stability. Journal of the American Chemical Society, 130(42), 13850-13851. doi:10.1021/ja8057953 es_ES
dc.description.references Valenzano, L., Civalleri, B., Chavan, S., Bordiga, S., Nilsen, M. H., Jakobsen, S., … Lamberti, C. (2011). Disclosing the Complex Structure of UiO-66 Metal Organic Framework: A Synergic Combination of Experiment and Theory. Chemistry of Materials, 23(7), 1700-1718. doi:10.1021/cm1022882 es_ES
dc.description.references Cirujano, F. G., Corma, A., & Llabrés i Xamena, F. X. (2015). Zirconium-containing metal organic frameworks as solid acid catalysts for the esterification of free fatty acids: Synthesis of biodiesel and other compounds of interest. Catalysis Today, 257, 213-220. doi:10.1016/j.cattod.2014.08.015 es_ES
dc.description.references Cirujano, F. G., Corma, A., & Llabrés i Xamena, F. X. (2015). Conversion of levulinic acid into chemicals: Synthesis of biomass derived levulinate esters over Zr-containing MOFs. Chemical Engineering Science, 124, 52-60. doi:10.1016/j.ces.2014.09.047 es_ES
dc.description.references Vermoortele, F., Bueken, B., Le Bars, G., Van de Voorde, B., Vandichel, M., Houthoofd, K., … De Vos, D. E. (2013). Synthesis Modulation as a Tool To Increase the Catalytic Activity of Metal–Organic Frameworks: The Unique Case of UiO-66(Zr). Journal of the American Chemical Society, 135(31), 11465-11468. doi:10.1021/ja405078u es_ES
dc.description.references Vermoortele, F., Vandichel, M., Van de Voorde, B., Ameloot, R., Waroquier, M., Van Speybroeck, V., & De Vos, D. E. (2012). Electronic Effects of Linker Substitution on Lewis Acid Catalysis with Metal-Organic Frameworks. Angewandte Chemie International Edition, 51(20), 4887-4890. doi:10.1002/anie.201108565 es_ES
dc.description.references Vermoortele, F., Vandichel, M., Van de Voorde, B., Ameloot, R., Waroquier, M., Van Speybroeck, V., & De Vos, D. E. (2012). Electronic Effects of Linker Substitution on Lewis Acid Catalysis with Metal-Organic Frameworks. Angewandte Chemie, 124(20), 4971-4974. doi:10.1002/ange.201108565 es_ES
dc.description.references Da Silva-Filho, L., da Silva, B., & Martins, L. (2012). Niobium Pentachloride Catalyzed Multicomponent Povarov Reaction. Synlett, 23(13), 1973-1977. doi:10.1055/s-0032-1316587 es_ES
dc.description.references Zhou, Z., Xu, F., Han, X., Zhou, J., & Shen, Q. (2007). Stereoselective Synthesis of Pyrano[3,2-c]- and Furano[3,2-c]quinolines: Samarium Diiodide-Catalyzed One-Pot Aza-Diels–Alder Reactions. European Journal of Organic Chemistry, 2007(31), 5265-5269. doi:10.1002/ejoc.200700288 es_ES
dc.description.references Babu, G., & Perumal, P. T. (1998). Convenient synthesis of pyrano[3,2-c]quinolines and indeno[2,1-c] quinolines by imino Diels-Alder reactions. Tetrahedron Letters, 39(20), 3225-3228. doi:10.1016/s0040-4039(98)00397-9 es_ES
dc.description.references Yadav, J., Subba Reddy, B., Madhuri, C. R., & Sabitha, G. (2004). LiBF4-Catalyzed Imino-Diels-Alder Reaction: A Facile Synthesis of Pyrano- and Furoquinolines. Synthesis, 2001(07). doi:10.1055/s-2001-14904 es_ES
dc.description.references Semwal, A., & Nayak, S. K. (2006). Copper(II) Bromide–Catalyzed Imino Diels–Alder Reaction: Synthesis of Pyrano[3,2‐c]‐ and Furo [3,2‐c]tetrahydroquinolines. Synthetic Communications, 36(2), 227-236. doi:10.1080/00397910500334595 es_ES
dc.description.references Domingo, L. R., Aurell, M. J., Sáez, J. A., & Mekelleche, S. M. (2014). Understanding the mechanism of the Povarov reaction. A DFT study. RSC Advances, 4(48), 25268. doi:10.1039/c4ra02916j es_ES
dc.description.references Lucchini, V., Prato, M., Scorrano, G., Stivanello, M., & Valle, G. (1992). Acid-catalysed addition of N-aryl imines to dihydrofuran. Postulated dependence of the reaction mechanism on the relative face of approach of reactants. Journal of the Chemical Society, Perkin Transactions 2, (2), 259. doi:10.1039/p29920000259 es_ES
dc.description.references Xu, X., Rummelt, S. M., Morel, F. L., Ranocchiari, M., & van Bokhoven, J. A. (2014). Selective Catalytic Behavior of a Phosphine-Tagged Metal-Organic Framework Organocatalyst. Chemistry - A European Journal, 20(47), 15467-15472. doi:10.1002/chem.201404498 es_ES
dc.description.references Schoenecker, P. M., Carson, C. G., Jasuja, H., Flemming, C. J. J., & Walton, K. S. (2012). Effect of Water Adsorption on Retention of Structure and Surface Area of Metal–Organic Frameworks. Industrial & Engineering Chemistry Research, 51(18), 6513-6519. doi:10.1021/ie202325p es_ES
dc.description.references Kandiah, M., Nilsen, M. H., Usseglio, S., Jakobsen, S., Olsbye, U., Tilset, M., … Lillerud, K. P. (2010). Synthesis and Stability of Tagged UiO-66 Zr-MOFs. Chemistry of Materials, 22(24), 6632-6640. doi:10.1021/cm102601v es_ES


This item appears in the following Collection(s)

Show simple item record