Cerdán Soriano, JM.; Faraj El Guelei, T.; Malla Martínez, N.; Marín Mateos-Aparicio, J.; Mas Marí, J. (2010). Block approximate inverse preconditioners for sparse nonsymmetric linear systems. ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS. 12(37):23-40. http://hdl.handle.net/10251/99451
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/99451
Title:
|
Block approximate inverse preconditioners for sparse nonsymmetric linear systems
|
Author:
|
Cerdán Soriano, Juana Mercedes
Faraj El Guelei, Táher
Malla Martínez, Natalia
Marín Mateos-Aparicio, José
Mas Marí, José
|
UPV Unit:
|
Universitat Politècnica de València. Instituto Universitario de Matemática Multidisciplinar - Institut Universitari de Matemàtica Multidisciplinària
Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
|
Issued date:
|
|
Abstract:
|
[EN] In this paper block approximate inverse preconditioners to solve sparse nonsymmetric linear systems
with iterative Krylov subspace methods are studied. The computation of the preconditioners involves consecutive
updates ...[+]
[EN] In this paper block approximate inverse preconditioners to solve sparse nonsymmetric linear systems
with iterative Krylov subspace methods are studied. The computation of the preconditioners involves consecutive
updates of variable rank of an initial and nonsingular matrix A0 and the application of the Sherman-MorrisonWoodbury
formula to compute an approximate inverse decomposition of the updated matrices. Therefore, they are
generalizations of the preconditioner presented in Bru et al. [SIAM J. Sci. Comput., 25 (2003), pp. 701¿715]. The
stability of the preconditioners is studied and it is shown that their computation is breakdown-free for H-matrices. To
test the performance the results of numerical experiments obtained for a representative set of matrices are presented.
[-]
|
Subjects:
|
Approximate inverse preconditioners
,
Variable rank updates
,
Block algorithms
,
Krylov iterative methods
,
Sherman-Morrison-Woodbury formula
|
Copyrigths:
|
Reserva de todos los derechos
|
Source:
|
ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS. (issn:
1068-9613
)
|
Publisher:
|
KENT STATE UNIVERSITY, ETNA, DEPT MATHEMATICS & COMPUTER SCIENCE, KENT, USA, OH, 44242-0001
|
Publisher version:
|
http://etna.math.kent.edu/
|
Type:
|
Artículo
|