Ahlström, J., & Karlsson, B. (1999). Microstructural evaluation and interpretation of the mechanically and thermally affected zone under railway wheel flats. Wear, 232(1), 1-14. doi:10.1016/s0043-1648(99)00166-0
Bian, X., Chao, C., Jin, W., & Chen, Y. (2011). A 2.5D finite element approach for predicting ground vibrations generated by vertical track irregularities. Journal of Zhejiang University-SCIENCE A, 12(12), 885-894. doi:10.1631/jzus.a11gt012
Grassie, S. L., & Kalousek, J. (1993). Rail Corrugation: Characteristics, Causes and Treatments. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 207(1), 57-68. doi:10.1243/pime_proc_1993_207_227_02
[+]
Ahlström, J., & Karlsson, B. (1999). Microstructural evaluation and interpretation of the mechanically and thermally affected zone under railway wheel flats. Wear, 232(1), 1-14. doi:10.1016/s0043-1648(99)00166-0
Bian, X., Chao, C., Jin, W., & Chen, Y. (2011). A 2.5D finite element approach for predicting ground vibrations generated by vertical track irregularities. Journal of Zhejiang University-SCIENCE A, 12(12), 885-894. doi:10.1631/jzus.a11gt012
Grassie, S. L., & Kalousek, J. (1993). Rail Corrugation: Characteristics, Causes and Treatments. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 207(1), 57-68. doi:10.1243/pime_proc_1993_207_227_02
Gupta, A., & Singh Ahuja, A. (2014). Dynamic Analysis of Railway Bridges under High Speed Trains. Universal Journal of Mechanical Engineering, 2(6), 199-204. doi:10.13189/ujme.2014.020604
Ju, S. H., & Lin, H. T. (2003). Resonance characteristics of high-speed trains passing simply supported bridges. Journal of Sound and Vibration, 267(5), 1127-1141. doi:10.1016/s0022-460x(02)01463-3
Kwark, J. W., Choi, E. S., Kim, Y. J., Kim, B. S., & Kim, S. I. (2004). Dynamic behavior of two-span continuous concrete bridges under moving high-speed train. Computers & Structures, 82(4-5), 463-474. doi:10.1016/s0045-7949(03)00054-3
Lu, Y., Mao, L., & Woodward, P. (2012). Frequency characteristics of railway bridge response to moving trains with consideration of train mass. Engineering Structures, 42, 9-22. doi:10.1016/j.engstruct.2012.04.007
Makino, T., Yamamoto, M., & Fujimura, T. (2002). Effect of material on spalling properties of railroad wheels. Wear, 253(1-2), 284-290. doi:10.1016/s0043-1648(02)00117-5
Mao, L., & Lu, Y. (2013). Critical Speed and Resonance Criteria of Railway Bridge Response to Moving Trains. Journal of Bridge Engineering, 18(2), 131-141. doi:10.1061/(asce)be.1943-5592.0000336
Museros, P., Romero, M. ., Poy, A., & Alarcón, E. (2002). Advances in the analysis of short span railway bridges for high-speed lines. Computers & Structures, 80(27-30), 2121-2132. doi:10.1016/s0045-7949(02)00261-4
Pal, S., Valente, C., Daniel, W., & Farjoo, M. (2012). Metallurgical and physical understanding of rail squat initiation and propagation. Wear, 284-285, 30-42. doi:10.1016/j.wear.2012.02.013
Sheng, X., Jones, C. J. C., & Thompson, D. J. (2004). A theoretical model for ground vibration from trains generated by vertical track irregularities. Journal of Sound and Vibration, 272(3-5), 937-965. doi:10.1016/s0022-460x(03)00782-x
Simon, S., Saulot, A., Dayot, C., Quost, X., & Berthier, Y. (2013). Tribological characterization of rail squat defects. Wear, 297(1-2), 926-942. doi:10.1016/j.wear.2012.11.011
Wang, Y., Wei, Q., Shi, J., & Long, X. (2010). Resonance characteristics of two-span continuous beam under moving high speed trains. Latin American Journal of Solids and Structures, 7(2), 185-199. doi:10.1590/s1679-78252010000200005
Xia, H., Zhang, N., & Guo, W. W. (2006). Analysis of resonance mechanism and conditions of train–bridge system. Journal of Sound and Vibration, 297(3-5), 810-822. doi:10.1016/j.jsv.2006.04.022
Yang, Y. B., & Lin, C. W. (2005). Vehicle–bridge interaction dynamics and potential applications. Journal of Sound and Vibration, 284(1-2), 205-226. doi:10.1016/j.jsv.2004.06.032
[-]