- -

Bacillus subtilis IAB/BS03 as a potential biological control agent

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Bacillus subtilis IAB/BS03 as a potential biological control agent

Show full item record

Hinarejos, E.; Castellano Pérez, M.; Rodrigo Bravo, I.; Belles Albert, JM.; Conejero Tomás, V.; López-Gresa, MP.; Lisón, P. (2016). Bacillus subtilis IAB/BS03 as a potential biological control agent. European Journal of Plant Pathology. 146(3):597-608. https://doi.org/10.1007/s10658-016-0945-3

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/99602

Files in this item

Item Metadata

Title: Bacillus subtilis IAB/BS03 as a potential biological control agent
Author: Hinarejos, Estefania Castellano Pérez, Mayte Rodrigo Bravo, Ismael Belles Albert, José Mª Conejero Tomás, Vicente López-Gresa, María Pilar Lisón, Purificación
UPV Unit: Universitat Politècnica de València. Instituto Universitario Mixto de Biología Molecular y Celular de Plantas - Institut Universitari Mixt de Biologia Molecular i Cel·lular de Plantes
Universitat Politècnica de València. Departamento de Biotecnología - Departament de Biotecnologia
Issued date:
Abstract:
[EN] We describe the efficacy of Bacillus subtilis strain IAB/BS03 in reducing disease incidence of B. subtilis IAB/BS03 as a foliar treatment against Botrytis cinerea and Pseudomonas syringae on greenhouse-grown tomato ...[+]
Subjects: Bacillus subtilis , Biological control , Iturin , Surfactin
Copyrigths: Reserva de todos los derechos
Source:
European Journal of Plant Pathology. (issn: 0929-1873 )
DOI: 10.1007/s10658-016-0945-3
Publisher:
Springer-Verlag
Publisher version: https://doi.org/10.1007/s10658-016-0945-3
Project ID:
info:eu-repo/grantAgreement/MINECO//BIO2012-33419/ES/CARACTERIZACION DE GENES Y METABOLITOS IMPLICADOS EN LA RESPUESTA DEFENSIVA DE LAS PLANTAS FRENTE A PATOGENOS/
Thanks:
This work was funded by IAB S. L. (Investigaciones y Aplicaciones Biotecnologicas, S. L.), and by grant BIO2012-33419 from the Spanish Ministry of Economy and Competitiveness. Mayte Castellano was the recipient of a research ...[+]
Type: Artículo

References

Abbott, W. S. (1925). A method for computing the effectiveness of an insecticide. Journal Economic Entomology, 18, 265–267.

Chen, H., Wang, L., Su, C.X., Gong, G. H., Wang, P., Yu, Z. L. (2008). Isolation and characterization of lipopeptide antibiotics produced by Bacillus subtilis. Letters in Applied Microbiology. 47, 180–186.

Cho, S. J., Lee, S. K., Cha, B. J., Kim, Y. H., & Shin, K. S. (2003). Detection and characterization of the Gloeosporium gloeosporioides growth inhibitory compound iturin a from Bacillus subtilis strain KS03. FEMS Microbiology Letters, 223, 47–51. [+]
Abbott, W. S. (1925). A method for computing the effectiveness of an insecticide. Journal Economic Entomology, 18, 265–267.

Chen, H., Wang, L., Su, C.X., Gong, G. H., Wang, P., Yu, Z. L. (2008). Isolation and characterization of lipopeptide antibiotics produced by Bacillus subtilis. Letters in Applied Microbiology. 47, 180–186.

Cho, S. J., Lee, S. K., Cha, B. J., Kim, Y. H., & Shin, K. S. (2003). Detection and characterization of the Gloeosporium gloeosporioides growth inhibitory compound iturin a from Bacillus subtilis strain KS03. FEMS Microbiology Letters, 223, 47–51.

Choudhary, D. K., & Johri, B. N. (2009). Interactions of Bacillus spp. and plants with special reference to induced systemic resistance (ISR). Microbiology Research, 164, 493–513.

Coego, A., Ramírez, V., Ellul, P., Mayda, E., & Vera, P. (2005). The H2O2-regulated Ep5C gene encodes a peroxidase required for bacterial speck susceptibility in tomato. The Plant Journal, 42, 283–293.

Conrath, U., Pieterse, C. M. J., & Mauch-Mani, B. (2002). Priming in plant-pathogen interactions. Trends in Plant Science, 7, 210–216.

Fleming, A. J., Mandel, T., Roth, I., & Kuhlemier, C. (1993). The patterns of gene expression in the tomato shoot apical meristem. The Plant Cell, 5, 297–309.

Fravel, D. R. (2005). Commercialization and implementation of biocontrol. Annual Review of Phytopathology, 43, 337–359.

Hammerschmidt, R., Nuckles, E. M., & Kuc, J. (1982). Association of enhanced peroxidase activity with induced systemic resistance of cucumber to Colletotrichum lagenarium. Physiological Plant Pathology, 20, 73–76.

Kawagoe, Y., Shiraishi, S., Kondo, H., Yamamoto, S., Aoki, Y., & Suzuki, S. (2015). Cyclic lipopeptide iturin a structure-dependently induces defense response in Arabidopsis plants by activating SA and JA signaling pathways. Biochemical and Biophysical Research Communications, 460, 1015–1020.

Kloepper, J. W., Ryu, C. M., & Zhang, S. A. (2004). Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology, 94, 1259–1266.

Liu, H.-X., Li, S.-M., Luo, Y.-M., Luo, L.-X., Li, J.-Q., & Guo, J.-H. (2014). Biological control of Ralstonia wilt, Phytophthora blight, Meloidogyne root-knot on bell pepper by the combination of Bacillus subtilis AR12, Bacillus subtilis SM21 and Chryseobacterium sp. R89. European Journal of Plant Pathology, 139, 107–116.

Mohammadi, M., & Kazemi, H. (2002). Changes in peroxidase and polyphenol oxidase activities in susceptible and resistant wheat heads inoculated with Fusarium graminearum and induced resistance. Plant Science, 162, 491–498.

Niderman, T., Genetet, I., Bruyere, T., Gees, R., Stintzi, A., Legrand, M., et al. (1995). Pathogenesis-related PR-1 proteins are antifungal - isolation and characterization of 3 14-Kilodalton proteins of tomato and of a basic PR-1 of tobacco with inhibitory activity against Phytophthora infestans. Plant Physiology, 108, 17–27.

Ohno, A., Ano, T., & Shoda, M. (1995). Effect of temperature on production of lipopeptide antibiotics, iturin a and surfactin by a dual producer, Bacillus subtilis Rb14, in solid-state fermentation. Journal of Fermentation and Bioengineering, 80, 517–519.

Ongena, M., & Jacques, P. (2008). Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends in Microbiology, 16, 115–125.

Pérez-García, A., Romero, D., & De Vicente, A. (2011). Plant protection and growth stimulation by microorganisms: biotechnological applications of bacilli in agriculture. Current Opinion in Biotechnology, 22, 187–193.

Phister, T. G., O’Sullivan, D. J., & McKay, L. L. (2004). Identification of bacilysin, chlorotetaine, and iturin a produced by Bacillus sp strain CS93 isolated from pozol, a Mexican fermented maize dough. Applied Environmental Microbiology, 70, 631–634.

Pieterse, C. M. J., vanWees, S. C. M., Hoffland, E., Van Pelt, J. A., & Van Loon, L. C. (1996). Systemic resistance in Arabidopsis induced by biocontrol bacteria is independent of salicylic acid accumulation and pathogenesis-related gene expression. The Plant Cell, 8, 1225–1237.

Pryor, S. W., Gibson, D. M., Krasnoff, S. B., & Walker, L. P. (2006). Identification of antifungal compounds in a biological control product using a microplate inhibition bioassay. Transactions of the ASAE, 49, 1643–1649.

Robert-Seilaniantz, A., Navarro, L., Bari, R., & Jones, J. D. (2007). Pathological hormone imbalances. Current Opinion in Plant Biology, 10, 372–379.

Rudrappa, T., Biedrzycki, M. L., Kunjeti, S. G., Donofrio, N. M., Czymmek, K. J., Paul W, P., et al. (2010). The rhizobacterial elicitor acetoin induces systemic resistance in Arabidopsis thaliana. Communicative and Integrative Biology, 3, 130–138.

Summermatter, K., Sticher, L., & Métraux, J. P. (1995). Systemic responses in Arabidopsis thaliana infected and challenged with Pseudomonas syringae pv syringae. Plant Physiology, 108, 1379–1385.

Tang, J. S., Zhao, F., Gao, H., Dai, Y., Yao, Z. H., Hong, K., et al. (2010). Characterization and online detection of surfactin isomers based on HPLC-MSn analyses and their inhibitory effects on the overproduction of nitric oxide and the release of TNF-α and IL-6 in LPS induced macrophages. Marine Drugs, 8, 2605–2618.

Tornero, P., Gadea, J., Conejero, V., & Vera, P. (1997). Two PR-1 genes from tomato are differentially regulated and reveal a novel mode of expression for a pathogenesis-related gene during the hypersensitive response and development. Molecular Plant-Microbe Interactions, 10, 624–634.

Tsavkelova, E. A., Klimova, S. Y., Cherdyntseva, T. A., & Netrusov, A. I. (2006). Microbial producers of plant growth stimulators and their practical use: a review. Applied Biochemistry and Microbiology, 42, 117–126.

Van Loon, L. C. (2007). Plant responses to plant growth-promoting rhizobacteria. European Journal of Plant Pathology, 119, 243–254.

Verhagen, B. W. M., Glazebrook, J., Zhu, T., Chang, H. S., Van Loon, L. C., & Pieterse, C. M. J. (2004). The transcriptome of rhizobacteria-induced systemic resistance in Arabidopsis. Molecular Plant-Microbe Interactions, 17, 895–908.

Wulff, B. B. H., Horvath, D. M., & Ward, E. R. (2011). Improving immunity in crops: new tactics in an old game. Current Opinion in Plant Biology, 14, 468–476.

Yáñez-Mendizábal, V., Zeriouh, H., Viñas, I., Torres, R., Usall, J., de Vicente, A., et al. (2012). Biological control of peach brown rot (Monilinia spp.) by Bacillus subtilis CPA-8 is based on production of fengycin-like lipopeptides. European Journal of Plant Pathology, 132, 609–619.

Zacarés, L., López-Gresa, M. P., Fayos, J., Primo, J., Bellés, J. M., & Conejero, V. (2007). Induction of p-coumaroyldopamine and feruloyldopamine, two novel metabolites, in tomato by the bacterial pathogen Pseudomonas syringae. Molecular Plant-Microbe Interactions, 20, 1439–1448.

Zadoks, J. C., Chang, T. T., & Konzak, C. F. (1974). A decimal code for the growth stages of cereals. Weed Research, 14, 415–421.

Zeriouh, H., Romero, D., García-Gutiérrez, L., Cazorla, F. M., De Vicente, A., & Pérez-García, A. (2011). The iturin-like lipopeptides are essential components in the biological control arsenal of Bacillus subtilis against bacterial diseases of cucurbits. Molecular Plant-Microbe Interactions, 24, 1540–1552.

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record