- -

Splitting methods in the numerical integration of non-autonomous dynamical systems

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Splitting methods in the numerical integration of non-autonomous dynamical systems

Show full item record

Blanes Zamora, S.; Casas Perez, F.; Murua, A. (2012). Splitting methods in the numerical integration of non-autonomous dynamical systems. Revista de la Real Academia de Ciencias Exactas Físicas y Naturales Serie A Matemáticas. 106(1):49-66. https://doi.org/10.1007/s13398-011-0024-8

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/99661

Files in this item

Item Metadata

Title: Splitting methods in the numerical integration of non-autonomous dynamical systems
Author: Blanes Zamora, Sergio Casas Perez, Fernando Murua, Ander
UPV Unit: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Issued date:
Abstract:
[EN] We present a procedure leading to efficient splitting schemes for the time integration of explicitly time dependent partitioned linear differential equations arising when certain partial differential equations are ...[+]
Subjects: Splitting methods , Time-dependent problems , Geometric integrators
Copyrigths: Reserva de todos los derechos
Source:
Revista de la Real Academia de Ciencias Exactas Físicas y Naturales Serie A Matemáticas. (issn: 1578-7303 )
DOI: 10.1007/s13398-011-0024-8
Publisher:
Springer-Verlag
Publisher version: http://doi.org/10.1007/s13398-011-0024-8
Project ID:
info:eu-repo/grantAgreement/Generalitat Valenciana//GV%2F2009%2F032/ES/Desarrollo de integradores geométricos adaptados a ecuaciones diferenciales con diferentes escalas de tiempo/
info:eu-repo/grantAgreement/MEC//MTM2007-61572/ES/ALGORITMOS DE INTEGRACION GEOMETRICA. TEORIA Y APLICACIONES/
Thanks:
This work has been supported by Ministerio de Ciencia e Innovacion (Spain) under project MTM2007-61572(co-financed by the ERDF of the European Union). SB also acknowledges financial support from Generalitat Valenciana ...[+]
Type: Artículo

References

Blanes S., Casas F.: Splitting methods for non-autonomous separable dynamical systems. J. Phys. A. Math. Gen. 39, 5405–5423 (2006)

Blanes S., Casas F., Murua A.: Symplectic splitting operator methods tailored for the time-dependent Schrödinger equation. J. Chem. Phys. 124, 234105 (2006)

Blanes S., Casas F., Murua A.: Splitting methods for non-autonomous linear systems. Int. J. Comput. Math. 84, 713–727 (2007) [+]
Blanes S., Casas F.: Splitting methods for non-autonomous separable dynamical systems. J. Phys. A. Math. Gen. 39, 5405–5423 (2006)

Blanes S., Casas F., Murua A.: Symplectic splitting operator methods tailored for the time-dependent Schrödinger equation. J. Chem. Phys. 124, 234105 (2006)

Blanes S., Casas F., Murua A.: Splitting methods for non-autonomous linear systems. Int. J. Comput. Math. 84, 713–727 (2007)

Blanes S., Casas F., Murua A.: On the linear stability of splitting methods. Found. Comp. Math. 8, 357–393 (2008)

Blanes S., Casas F., Murua A.: Splitting and composition methods in the numerical integration of differential equations. Bol. Soc. Esp. Math. Apl. 45, 87–143 (2008)

Blanes, S., Casas, F., Murua, A.: Error analysis of splitting methods for the time dependent Schrödinger equation. arXiv:1001.1549 (2011)

Blanes S., Casas F., Oteo J.A., Ros J.: The Magnus expansion and some of its applications. Phys. Rep. 470, 151–238 (2009)

Blanes S., Casas F., Ros J.: Improved high order integrators based on Magnus expansion. BIT 40, 434–450 (2000)

Blanes S., Diele F., Marangi C., Ragni S.: Splitting and composition methods for explicit time dependence in separable dynamical systems. J. Comput. Appl. Math. 235, 646–659 (2010)

Blanes S., Moan P.C.: Practical symplectic partitioned Runge–Kutta and Runge–Kutta–Nyström methods. J. Comput. Appl. Math. 142, 313–330 (2002)

Gray S., Manolopoulos D.E.: Symplectic integrators tailored to the time-dependent Schrödinger equation. J. Chem. Phys. 104, 7099–7112 (1996)

Gray S., Verosky J.M.: Classical Hamiltonian structures in wave packet dynamics. J. Chem. Phys. 100, 5011–5022 (1994)

Hairer E., Lubich C., Wanner G.: Geometric numerical integration. Structure-preserving algorithms for ordinary differential equations, 2nd ed. Springer, Berlin (2006)

Iserles A., Munthe-Kaas H.Z., Nørsett S.P., Zanna A.: Lie group methods. Acta Numer. 9, 215–365 (2000)

Leimkuhler B., Reich S.: Simulating Hamiltonian Dynamics. Cambridge University Press, Cambridge (2004)

Magnus W.: On the exponential solution of differential equations for a linear operator. Commun. Pure Appl. Math. 7, 649–673 (1954)

McLachlan R.I, Quispel R.: Splitting methods. Acta Numer. 11, 341–434 (2002)

McLachlan R.I, Quispel R.G.W.: Geometric integrators for ODEs. J. Phys. A. Math. Gen. 39, 5251–5285 (2006)

Rieben R., White D., Rodrigue G.: High-order symplectic integration methods for finite element solutions to time dependent Maxwell equations. IEEE Trans. Antennas Propag. 52, 2190–2195 (2004)

Sanz-Serna J.M., Calvo M.P.: Numerical Hamiltonian Problems. Chapman & Hall, London (1994)

Sanz-Serna J.M., Portillo A.: Classical numerical integrators for wave-packet dynamics. J. Chem. Phys. 104, 2349–2355 (1996)

Sofroniou M., Spaletta G.: Derivation of symmetric composition constants for symmetric integrators. Optim. Methods Softw. 20, 597–613 (2005)

Walker R.B., Preston K.: Quantum versus classical dynamics in treatment of multiple photon excitation of anharmonic-oscillator. J. Chem. Phys. 67, 2017–2028 (1977)

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record