Bader, P.; Blanes Zamora, S. (2011). Fourier methods for the perturbed harmonic oscillator in linear and nonlinear Schrödinger equations. Physical Review E. 83(4):46711-1-46711-11. https://doi.org/10.1103/PhysRevE.83.046711
Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/99668
Título:
|
Fourier methods for the perturbed harmonic oscillator in linear and nonlinear Schrödinger equations
|
Autor:
|
Bader, Philipp
Blanes Zamora, Sergio
|
Entidad UPV:
|
Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
|
Fecha difusión:
|
|
Resumen:
|
[EN] We consider the numerical integration of the Gross-Pitaevskii equation with a potential trap given by a time-dependent harmonic potential or a small perturbation thereof. Splitting methods are frequently used with ...[+]
[EN] We consider the numerical integration of the Gross-Pitaevskii equation with a potential trap given by a time-dependent harmonic potential or a small perturbation thereof. Splitting methods are frequently used with Fourier techniques since the system can be split into the kinetic and remaining part, and each part can be solved efficiently using fast Fourier transforms. Splitting the system into the quantum harmonic-oscillator problem and the remaining part allows us to get higher accuracies in many cases, but it requires us to change between Hermite basis functions and the coordinate space, and this is not efficient for time-dependent frequencies or strong nonlinearities. We show how to build methods that combine the advantages of using Fourier methods while solving the time-dependent harmonic oscillator exactly (or with a high accuracy by using a Magnus integrator and an appropriate decomposition). © 2011 American Physical Society.
[-]
|
Palabras clave:
|
Coordinate space
,
Dinger equation
,
Fourier methods
,
Fourier techniques
,
Gross-Pitaevskii equation
,
Harmonic oscillators
,
Harmonic potential
,
Hermite basis functions
,
Numerical integrations
,
Potential trap
,
Small perturbations
,
Splitting method
,
Strong nonlinearity
,
Time-dependent
,
Bose-Einstein condensation
,
Control nonlinearities
,
Harmonic analysis
,
Harmonic functions
,
Integration
,
Numerical methods
,
Oscillators (mechanical)
,
Fast Fourier transform
|
Derechos de uso:
|
Reserva de todos los derechos
|
Fuente:
|
Physical Review E. (issn:
1539-3755
)
|
DOI:
|
10.1103/PhysRevE.83.046711
|
Editorial:
|
American Physical Society
|
Versión del editor:
|
http://doi.org/10.1103/PhysRevE.83.046711
|
Código del Proyecto:
|
info:eu-repo/grantAgreement/Generalitat Valenciana//GV%2F2009%2F032/ES/Desarrollo de integradores geométricos adaptados a ecuaciones diferenciales con diferentes escalas de tiempo/
info:eu-repo/grantAgreement/MICINN//MTM2010-18246-C03-02/ES/METODOS DE ESCISION Y COMPOSICION EN INTEGRACION NUMERICA GEOMETRICA/
|
Agradecimientos:
|
We would like to acknowledge the referees for their careful reading and suggestions. The authors acknowledge the support of the Generalitat Valenciana through the project GV/2009/032. The work of S. B. has also been partially ...[+]
We would like to acknowledge the referees for their careful reading and suggestions. The authors acknowledge the support of the Generalitat Valenciana through the project GV/2009/032. The work of S. B. has also been partially supported by Ministerio de Ciencia e Innovacion (Spain) under the coordinated project MTM2010-18246-C03 (cofinanced by the ERDF of the European Union).
[-]
|
Tipo:
|
Artículo
|