- -

Extraction and preconcentration of organophosphorus pesticides in water by using a polymethacrylate-based sorbent modified with magnetic nanoparticles

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Extraction and preconcentration of organophosphorus pesticides in water by using a polymethacrylate-based sorbent modified with magnetic nanoparticles

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Meseguer-Lloret, S. es_ES
dc.contributor.author Torres-Cartas, Sagrario es_ES
dc.contributor.author Catalá-Icardo, Mónica es_ES
dc.contributor.author Simó-Alfonso, Ernesto F. es_ES
dc.contributor.author Herrero-Martínez, José Manuel es_ES
dc.date.accessioned 2018-03-25T04:17:01Z
dc.date.available 2018-03-25T04:17:01Z
dc.date.issued 2017 es_ES
dc.identifier.issn 1618-2642 es_ES
dc.identifier.uri http://hdl.handle.net/10251/99711
dc.description.abstract [EN] A polymethacrylate-based sorbent modified with magnetic nanoparticles (MNPs) has been synthesized and used as sorbent for solid-phase extraction (SPE) and magnetic solid-phase extraction (MSPE) of three organophosphorus pesticides (phosmet, pirimiphos-methyl, and chlorpyrifos) in water samples followed by high-performance liquid chromatography diode array detection. The sorbent was prepared from a glycidyl methacrylate-based polymer, modified with a silanizing agent, followed by immobilization of MNPs on the surface of the material. The sorbent was characterized by scanning electron microscopy and Fourier transform infrared spectroscopy. Comparative studies of this support were done both in conventional SPE cartridge and MSPE approach. Several extraction parameters (loading pH, elution solvent, eluting volume, and loading flow rate) were investigated in detail. Under optimal conditions, the proposed sorbent gave an excellent enrichment efficiency of analytes and detection limits between 0.01 and 0.25 μg L−1. The recoveries of organophosphorus pesticides in spiked water samples were in the range of 71 98%, and the developed sorbent showed a high reusability (up to 50 uses without losses in recovery). The proposed method was satisfactorily applied to the analysis of these pesticides in water samples from different sources. es_ES
dc.description.sponsorship This work was supported by projects CTQ2014-52765-R (MINECO of Spain and FEDER) and PROMETEO/2016/145 (Conselleria de Educacion, Investigacion, Cultura y Deporte of Generalitat Valenciana, Spain). en_EN
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Analytical and Bioanalytical Chemistry es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Organophosphorus pesticides es_ES
dc.subject Magnetic polymer-based material es_ES
dc.subject Solid-phase extraction es_ES
dc.subject Water analysis es_ES
dc.subject.classification QUIMICA ANALITICA es_ES
dc.title Extraction and preconcentration of organophosphorus pesticides in water by using a polymethacrylate-based sorbent modified with magnetic nanoparticles es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s00216-017-0294-x es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTQ2014-52765-R/ES/DESARROLLO DE FASES ESTACIONARIAS MONOLITICAS HIBRIDAS POLIMERO-NANOPARTICULAS Y SUS APLICACIONES EN SEPARACION/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F145/ES/Sistemas de separación basados en nuevos polímeros porosos y composites polímero-nanopartículas con aplicaciones industriales y medioambientales/ es_ES
dc.rights.accessRights Abierto es_ES
dc.date.embargoEndDate 2018-05-01 es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Meseguer-Lloret, S.; Torres-Cartas, S.; Catalá-Icardo, M.; Simó-Alfonso, EF.; Herrero-Martínez, JM. (2017). Extraction and preconcentration of organophosphorus pesticides in water by using a polymethacrylate-based sorbent modified with magnetic nanoparticles. Analytical and Bioanalytical Chemistry. 409(14):3561-3571. https://doi.org/10.1007/s00216-017-0294-x es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1007/s00216-017-0294-x es_ES
dc.description.upvformatpinicio 3561 es_ES
dc.description.upvformatpfin 3571 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 409 es_ES
dc.description.issue 14 es_ES
dc.relation.pasarela S\336750 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Council Directive 98/83/EC of 3 November 1998 on the quality of water intended for human consumption es_ES
dc.description.references Botitsi HV, Garbis SD, Economou A, Tsipi DF. Current mass spectrometry strategies for the analysis of pesticides and their metabolites in food and water matrices. Mass Spectrom Rev. 2011;30:907–39. es_ES
dc.description.references Kuster M, López de Alda M, Barceló D. Liquid chromatography tandem mass spectrometry analysis and regulatory issues for polar pesticides in natural and treated waters. J Chromatogr A. 2009;1216:520–9. es_ES
dc.description.references Catalá-Icardo M, Meseguer-Lloret S, Torres-Cartas S. Photoinduced chemiluminescence determination of carbamate pesticides. Photochem Photobiol Sci. 2016;15:626–34. es_ES
dc.description.references Huertas-Pérez JF, García-Campaña AM. Determination of N-methylcarbamate pesticides in water and vegetable samples by HPLC with post-column chemiluminescence detection using the luminol reaction. Anal Chim Acta. 2008;630(2):194–204. es_ES
dc.description.references Samadi S, Sereshti H, Assadi Y. Ultra-preconcentration and determination of thirteen organophosphorus pesticides in water sample using solid-phase extraction followed by dispersive liquid-liquid microextraction and gas chromatography with flame photometric detection. J Chromatogr A. 2012;1219:61–5. es_ES
dc.description.references He L, Luo X, Xie H, Wang C, Jiang X, Lu K. Ionic liquid-based dispersive liquid–liquid microextraction followed high-performance liquid chromatography for the determination of organophosphorus pesticides in water sample. Anal Chim Acta. 2009;655:52–9. es_ES
dc.description.references Wu C, Liu N, Wu Q, Wang C, Wang Z. Application of ultrasound-assisted surfactant-enhanced emulsification microextraction for the determination of some organophosphorus pesticides in water samples. Anal Chim Acta. 2010;679:56–62. es_ES
dc.description.references Peng G, Lu Y, He Q, Mmereki D, Zhou G, Chen J, et al. Determination of 3,5,6-trichloro-2-pyridinol, phoxim and chlorpyrifos-methyl in water samples using a new pretreatment method coupled with high-performance liquid chromatography. J Sep Sci. 2016;38:4204–10. es_ES
dc.description.references Báez ME, Rodríguez M, Lastra O, Contreras P. Solid phase extraction of organophosphorus, triazine, and triazole-derived pesticides from water samples. A critical study. J High Resolut Chrom. 1997;20:591–6. es_ES
dc.description.references Rocha AA, Monteiro SH, Andrade GCRM, Vilca FZ, Tornisielo CL. Monitoring of pesticides residues in surface and subsurface waters, sediments and fish in center-pivot irrigation areas. J Braz Chem Soc. 2015;25(11):2269–78. es_ES
dc.description.references Hadjmohammadi MR, Peyrovi M, Biparva P. Comparison of C18 silica and multi-walled carbon nanotubes as the adsorbents for the solid-phase extraction of Chlorpyrifos and Phosalone in water samples using HPLC. J Sep Sci. 2010;33:1044–51. es_ES
dc.description.references Pelit L, Dizdas TN. Preparation and application of a polythiophene solid-phase microextraction fiber for the determination of endocrine-disruptor pesticides in well waters. J Sep Sci. 2013;36:3234–41. es_ES
dc.description.references Ibrahim WAW, Nodeh HR, Aboul-Enein HY, Sanagi MM. Magnetic solid phase extraction based on modified ferum oxides for enrichment, preconcentration and isolation of pesticides and selected pollutants. Crit Rev Anal Chem. 2015;45:270–87. es_ES
dc.description.references Li XS, Zhu GT, Luo YB, Yuan BF, Feng YQ. Synthesis and applications of functionalized magnetic materials in sample preparation. Trends Anal Chem. 2013;45:233–47. es_ES
dc.description.references Maddah B, Shamsi J. Extraction and preconcentration of trace amounts of diazinon and fenitrothion from environmental water by magnetite octadecylsilane nanoparticles. J Chromatogr A. 2012;1256:40–5. es_ES
dc.description.references Xie J, Liu T, Song G, Hu Y, Deng C. Simultaneous analysis of organophosphorus pesticides in water by magnetic solid phase extraction coupled with GC-MS. Chromatographia. 2013;76:535–40. es_ES
dc.description.references Heidari H, Razmi H. Multiresponse optimization of magnetic solid phase extraction based on carbon coated Fe3O4 nanoparticles using desirability function approach for the determination of the organophosphorus pesticides in aquatic samples by HPLC-UV. Talanta. 2012;99:13–21. es_ES
dc.description.references Yan S, Qi TT, Chen DW, Li Z, Li XJ, Pan SY. Magnetic solid-phase extraction based on magnetite/reduced graphene oxide nanoparticles for determination of trace isocarbophos residues in different matrices. J Chromatogr A. 2014;1347:30–8. es_ES
dc.description.references Tavakoli M, Hajimahmoodi M, Shemirani F. Trace level monitoring of pesticides in water samples using fatty acid coated magnetic nanoparticles prior to GC-MS. Anal Methods. 2014;6:2988–97. es_ES
dc.description.references Tang Q, Wang X, Yu F, Qiao X, Xu Z. Simultaneous determination of ten organophosphorus pesticide residues in fruits by gas chromatography coupled with magnetic separation. J Sep Sci. 2014;27:820–7. es_ES
dc.description.references Shen H, Zhu Y, Wen X, Zhuang Y. Preparation of Fe3O4-C18 nano-magnetic composite materials and their cleanup properties for organophosphorous pesticides. Anal Bioanal Chem. 2007;387:2227–37. es_ES
dc.description.references Bagheri H, Zandi O, Aghakhani A. Magnetic nanoparticle-based micro-solid phase extraction and GC–MS determination of oxadiargyl in aqueous samples. Chromatographia. 2011;74:483–8. es_ES
dc.description.references Moravcova D, Rantamaki AH, Dusa F, Wiedmer SK. Monoliths in capillary electrochromatography and capillary liquid chromatography in conjunction with mass spectrometry. Electrophoresis. 2016;37(7–8):880–912. es_ES
dc.description.references Nema T, Chan ECY, Ho PC. Applications of monolithic materials for sample preparation. J Pharm Biomed Anal. 2014;87:130–41. es_ES
dc.description.references Vergara-Barberán M, Lerma-García MJ, Simó-Alfonso EF, Herrero-Martínez JM. Solid-phase extraction based on ground methacrylate monolith modified with gold nanoparticles for isolation of proteins. Anal Chim Acta. 2016;917:37–43. es_ES
dc.description.references Vukoje ID, Dzunuzovic ES, Vodnik VV, Dimitrijevic S, Ahrenkiel SP, Nedeljkovic JM. Synthesis, characterization, and antimicrobial activity of poly(GMA-co-EGDMA) polymer decorated with silver nanoparticles. J Mater Sci. 2014;49:6838–44. es_ES
dc.description.references Krenkova J, Foret F. Iron oxide nanoparticle coating of organic polymer-based monolithic columns for phosphopeptide enrichment. J Sep Sci. 2011;34(16–17):2106–12. es_ES
dc.description.references Daou TJ, Begin-Colin S, Grenèche JM, Thomas F, Derory A, Bernhardt P, et al. Phosphate adsorption properties of magnetite-based nanoparticles. Chem Mater. 2007;19:4494–505. es_ES
dc.description.references Mezenner NY, Bensmaili A. Kinetics and thermodynamic study of phosphate adsorption on iron hydroxide-eggshell waste. Chem Eng J. 2009;147:87–96. es_ES
dc.description.references Yang C, Wang G, Lu Z, Sun J, Zhuang J, Yang W. Effect of ultrasonic treatment on dispersibility of Fe3O4 nanoparticles and synthesis of multi-core Fe3O4/SiO2 core/shell nanoparticles. J Mater Chem. 2005;15:4252–7. es_ES
dc.description.references Carrasco-Correa EJ, Ramis-Ramos G, Herrero-Martínez JM. Methacrylate monolithic columns functionalized with epinephrine for capillary electrochromatography applications. J Chromatogr A. 2013;1298:61–7. es_ES
dc.description.references Waldron RD. Infrared spectra of ferrites. Phys Rev. 1955;99:1727–35. es_ES
dc.description.references Yamaura M, Camilo RL, Sampaio LC, Macedo MA, Nakamura M, Toma HE. Preparation and characterization of (3-aminopropyl)triethoxysilane-coated magnetite nanoparticles. J Magn Magn Mat. 2004;279:210–7. es_ES
dc.description.references Jiang L, Sun W, Kim J. Preparation and characterization of ω-functionalized polystyrene–magnetite nanocomposites. Mater Chem Phys. 2007;101:291–6. es_ES
dc.description.references Dallas P, Georgakilas V, Niarchos D, Komninou P, Kehagias T, Petridis D. Synthesis, characterization and thermal properties of polymer/magnetite nanocomposites. Nanotechnology. 2006;17:2046–53. es_ES
dc.description.references Zhao XL, Shi YL, Wang T, Cai YQ, Jiang GB. Preparation of silica-magnetite nanoparticle mixed hemimicelle sorbents for extraction of several typical phenolic compounds from environmental water samples. J Chromatogr A. 2008;1188:140–7. es_ES
dc.description.references Sitko R, Gliwinska B, Zawisza B, Feist B. Ultrasound-assisted solid-phase extraction using multiwalled carbon nanotubes for determination of cadmium by flame atomic absorption spectrometry. J Anal At Spectrom. 2013;28:405–10. es_ES
dc.description.references Suslick KS, Price GJ. Application of ultrasound to materials chemistry. Annu Rev Mater Sci. 1999;29:295–326. es_ES
dc.description.references Boqué R, Heyden YV. The limit of detection. LCGC Eur. 2009;22(2):1–4. es_ES
dc.description.references Catalá-Icardo M, Lahuerta-Zamora L, Torres-Cartas S, Meseguer-Lloret S. Determination of organothiophosphorus pesticides in water by liquid chromatography and post-column chemiluminescence with cerium(IV). J Chromatogr A. 2014;1341:31–40. es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem