- -

Chaotic asymptotic behaviour of the solutions of the Lighthill Whitham Richards equation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Chaotic asymptotic behaviour of the solutions of the Lighthill Whitham Richards equation

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Conejero, J. Alberto es_ES
dc.contributor.author Martínez Jiménez, Félix es_ES
dc.contributor.author Peris Manguillot, Alfredo es_ES
dc.contributor.author Ródenas Escribá, Francisco de Asís es_ES
dc.date.accessioned 2018-03-26T06:57:48Z
dc.date.available 2018-03-26T06:57:48Z
dc.date.issued 2016 es_ES
dc.identifier.issn 0924-090X es_ES
dc.identifier.uri http://hdl.handle.net/10251/99754
dc.description.abstract [EN] The phenomenon of chaos has been exhibited in mathematical nonlinear models that describe traffic flows, see, for instance (Li and Gao in Modern Phys Lett B 18(26-27):1395-1402, 2004; Li in Phys. D Nonlinear Phenom 207(1-2):41-51, 2005). At microscopic level, Devaney chaos and distributional chaos have been exhibited for some car-following models, such as the quick-thinking-driver model and the forward and backward control model (Barrachina et al. in 2015; Conejero et al. in Semigroup Forum, 2015). We present here the existence of chaos for the macroscopic model given by the Lighthill Whitham Richards equation. es_ES
dc.description.sponsorship The authors are supported by MEC Project MTM2013-47093-P. The second and third authors are supported by GVA, Project PROMETEOII/2013/013
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof Nonlinear Dynamics es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Devaney chaos es_ES
dc.subject Mixing measures es_ES
dc.subject Traffic es_ES
dc.subject Lighthill Whitman Richards equation es_ES
dc.subject C_0 -semigroup es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Chaotic asymptotic behaviour of the solutions of the Lighthill Whitham Richards equation es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1007/s11071-015-2245-4 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MTM2013-47093-P/ES/HIPERCICLICIDAD Y CAOS DE OPERADORES/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//PROMETEOII%2F2013%2F013/ES/Análisis funcional, teoría de operadores y sus aplicaciones (AFUNTOP)/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Conejero, JA.; Martínez Jiménez, F.; Peris Manguillot, A.; Ródenas Escribá, FDA. (2016). Chaotic asymptotic behaviour of the solutions of the Lighthill Whitham Richards equation. Nonlinear Dynamics. 84(1):127-133. https://doi.org/10.1007/s11071-015-2245-4 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://doi.org/10.1007/s11071-015-2245-4 es_ES
dc.description.upvformatpinicio 127 es_ES
dc.description.upvformatpfin 133 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 84 es_ES
dc.description.issue 1 es_ES
dc.relation.pasarela S\299552 es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Ministerio de Economía, Industria y Competitividad es_ES
dc.description.references Albanese, A.A., Barrachina, X., Mangino, E.M., Peris, A.: Distributional chaos for strongly continuous semigroups of operators. Commun. Pure Appl. Anal. 12(5), 2069–2082 (2013) es_ES
dc.description.references Aroza, J., Peris, A.: Chaotic behaviour of birth-and-death models with proliferation. J. Differ. Equ. Appl. 18(4), 647–655 (2012) es_ES
dc.description.references Banasiak, J., Lachowicz, M.: Chaos for a class of linear kinetic models. C. R. Acad. Sci. Paris Sér. II 329, 439–444 (2001) es_ES
dc.description.references Banasiak, J., Lachowicz, M.: Topological chaos for birth-and-death-type models with proliferation. Math. Models Methods Appl. Sci. 12(6), 755–775 (2002) es_ES
dc.description.references Banasiak, J., Moszyński, M.: A generalization of Desch–Schappacher–Webb criteria for chaos. Discrete Contin. Dyn. Syst. 12(5), 959–972 (2005) es_ES
dc.description.references Banasiak, J., Moszyński, M.: Dynamics of birth-and-death processes with proliferation—stability and chaos. Discrete Contin. Dyn. Syst. 29(1), 67–79 (2011) es_ES
dc.description.references Barrachina, X., Conejero, J.A.: Devaney chaos and distributional chaos in the solution of certain partial differential equations. Abstr. Appl. Anal. Art. ID 457019, 11 (2012) es_ES
dc.description.references Barrachina, X., Conejero, J.A., Murillo-Arcila, M., Seoane-Sepúlveda, J.B.: Distributional chaos for the forward and backward control traffic model (2015, preprint) es_ES
dc.description.references Bayart, F., Matheron, É.: Dynamics of Linear Operators, Cambridge Tracts in Mathematics, vol. 179. Cambridge University Press, Cambridge (2009) es_ES
dc.description.references Bayart, F., Matheron, É.: Mixing operators and small subsets of the circle. J Reine Angew. Math. (2015, to appear) es_ES
dc.description.references Bermúdez, T., Bonilla, A., Conejero, J.A., Peris, A.: Hypercyclic, topologically mixing and chaotic semigroups on Banach spaces. Stud. Math. 170(1), 57–75 (2005) es_ES
dc.description.references Bermúdez, T., Bonilla, A., Martínez-Giménez, F., Peris, A.: Li-Yorke and distributionally chaotic operators. J. Math. Anal. Appl. 373(1), 83–93 (2011) es_ES
dc.description.references Bernardes Jr, N.C., Bonilla, A., Müller, V., Peris, A.: Distributional chaos for linear operators. J. Funct. Anal. 265(9), 2143–2163 (2013) es_ES
dc.description.references Brackstone, M., McDonald, M.: Car-following: a historical review. Transp. Res. Part F Traffic Psychol. Behav. 2(4), 181–196 (1999) es_ES
dc.description.references Conejero, J.A., Lizama, C., Rodenas, F.: Chaotic behaviour of the solutions of the Moore–Gibson–Thompson equation. Appl. Math. Inf. Sci. 9(5), 1–6 (2015) es_ES
dc.description.references Conejero, J.A., Mangino, E.M.: Hypercyclic semigroups generated by Ornstein-Uhlenbeck operators. Mediterr. J. Math. 7(1), 101–109 (2010) es_ES
dc.description.references Conejero, J.A., Müller, V., Peris, A.: Hypercyclic behaviour of operators in a hypercyclic $$C_0$$ C 0 -semigroup. J. Funct. Anal. 244, 342–348 (2007) es_ES
dc.description.references Conejero, J.A., Murillo-Arcila, M., Seoane-Sepúlveda, J.B.: Linear chaos for the quick-thinking-driver model. Semigroup Forum (2015). doi: 10.1007/s00233-015-9704-6 es_ES
dc.description.references Conejero, J.A., Peris, A., Trujillo, M.: Chaotic asymptotic behavior of the hyperbolic heat transfer equation solutions. Int. J. Bifur. Chaos Appl. Sci. Eng. 20(9), 2943–2947 (2010) es_ES
dc.description.references Conejero, J.A., Rodenas, F., Trujillo, M.: Chaos for the hyperbolic bioheat equation. Discrete Contin. Dyn. Syst. 35(2), 653–668 (2015) es_ES
dc.description.references Desch, W., Schappacher, W., Webb, G.F.: Hypercyclic and chaotic semigroups of linear operators. Ergod. Theory Dyn. Syst. 17(4), 793–819 (1997) es_ES
dc.description.references Engel, K.-J., Nagel, R.: One-parameter semigroups for linear evolution equations, Graduate Texts in Mathematics, vol. 194. Springer, New York (2000). With contributions by S. Brendle, M. Campiti, T. Hahn, G. Metafune, G. Nickel, D. Pallara, C. Perazzoli, A. Rhandi, S. Romanelli and R. Schnaubelt es_ES
dc.description.references Grosse-Erdmann, K.-G., Peris Manguillot, A.: Linear Chaos. Universitext. Springer, London (2011) es_ES
dc.description.references Herzog, G.: On a universality of the heat equation. Math. Nachr. 188, 169–171 (1997) es_ES
dc.description.references Li, K., Gao, Z.: Nonlinear dynamics analysis of traffic time series. Modern Phys. Lett. B 18(26–27), 1395–1402 (2004) es_ES
dc.description.references Li, T.: Nonlinear dynamics of traffic jams. Phys. D Nonlinear Phenom. 207(1–2), 41–51 (2005) es_ES
dc.description.references Lustri, C.: Continuum Modelling of Traffic Flow. Special Topic Report. Oxford University, Oxford (2010) es_ES
dc.description.references Lighthill, M.J., Whitham, G.B.: On kinematic waves. II. A theory of traffic flow on long crowded roads. Proc. R. Soc. Lond. Ser. A. 229, 317–345 (1955) es_ES
dc.description.references Maerivoet, S., De Moor, B.: Cellular automata models of road traffic. Phys. Rep. 419(1), 1–64 (2005) es_ES
dc.description.references Mangino, E.M., Peris, A.: Frequently hypercyclic semigroups. Stud. Math. 202(3), 227–242 (2011) es_ES
dc.description.references Murillo-Arcila, M., Peris, A.: Strong mixing measures for linear operators and frequent hypercyclicity. J. Math. Anal. Appl. 398, 462–465 (2013) es_ES
dc.description.references Murillo-Arcila, M., Peris, A.: Strong mixing measures for $$C_0$$ C 0 -semigroups. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM 109(1), 101–115 (2015) es_ES
dc.description.references Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, vol. 44. Springer, New York (1983) es_ES
dc.description.references Protopopescu, V., Azmy, Y.Y.: Topological chaos for a class of linear models. Math. Models Methods Appl. Sci. 2(1), 79–90 (1992) es_ES
dc.description.references Richards, P.I.: Shock waves on the highway. Oper. Res. 4, 42–51 (1956) es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem