- -

A note on extreme points of $C^\infty$-smooth balls in polyhedral spaces

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A note on extreme points of $C^\infty$-smooth balls in polyhedral spaces

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Guirao Sánchez, Antonio José es_ES
dc.contributor.author Montesinos Santalucia, Vicente es_ES
dc.contributor.author Zizler, Vaclav es_ES
dc.date.accessioned 2018-03-26T07:04:48Z
dc.date.available 2018-03-26T07:04:48Z
dc.date.issued 2015 es_ES
dc.identifier.issn 0002-9939 es_ES
dc.identifier.uri http://hdl.handle.net/10251/99757
dc.description.abstract [EN] Morris (1983) proved that every separable Banach space $X$ that contains an isomorphic copy of $c_0$ has an equivalent strictly convex norm such that all points of its unit sphere $S_X$ are unpreserved extreme, i.e., they are no longer extreme points of $B_{X^{**}}$. We use a result of Hájek (1995) to prove that any separable infinite-dimensional polyhedral Banach space has an equivalent $C^{\infty}$-smooth and strictly convex norm with the same property as in Morris' result. We additionally show that no point on the sphere of a $C^2$-smooth equivalent norm on a polyhedral infinite-dimensional space can be strongly extreme, i.e., there is no point $ x$ on the sphere for which a sequence $ (h_n)$ in $ X$ with $ \Vert h_n\Vert\not \to 0$ exists such that $ \Vert x\pm h_n\Vert\to 1$. es_ES
dc.description.sponsorship The first author’s research was supported by Ministerio de Econom´ıa y Competitividad and FEDER under project MTM2011-25377 and the Universitat Polit`ecnica de Val`encia. The second author’s research was supported by Ministerio de Econom´ıa y Competitividad and FEDER under project MTM2011-22417 and the Universitat Polit`ecnica de Val`encia
dc.language Inglés es_ES
dc.publisher American Mathematical Society es_ES
dc.relation.ispartof Proceedings of the American Mathematical Society es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Polyhedral space es_ES
dc.subject Extreme point es_ES
dc.subject Norm that locally depends on a finite number of coordinates es_ES
dc.subject Countable James boundary es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title A note on extreme points of $C^\infty$-smooth balls in polyhedral spaces es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1090/S0002-9939-2015-12617-2 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MTM2011-25377/ES/LA INTERACCION ENTRE TEORIA DE LA MEDIDA, TOPOLOGIA Y ANALISIS FUNCIONAL./ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//MTM2011-22417/ES/ESPACIOS Y ALGEBRAS DE FUNCIONES DIFERENCIABLES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Guirao Sánchez, AJ.; Montesinos Santalucia, V.; Zizler, V. (2015). A note on extreme points of $C^\infty$-smooth balls in polyhedral spaces. Proceedings of the American Mathematical Society. 143(8):3413-3420. https://doi.org/10.1090/S0002-9939-2015-12617-2 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion http://dx.doi.org/10.1090/S0002-9939-2015-12617-2 es_ES
dc.description.upvformatpinicio 3413 es_ES
dc.description.upvformatpfin 3420 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 143 es_ES
dc.description.issue 8 es_ES
dc.relation.pasarela S\284590 es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem